
GeoMOOSE Documentation
Release 2.X

Dan "Ducky" Little

August 20, 2013

CONTENTS

1 What is GeoMOOSE? 3

2 GeoMOOSE Gallery 5

3 More Information About GeoMOOSE 7
3.1 GeoMOOSE License . 7
3.2 Gallery . 7
3.3 Mailing Lists . 8
3.4 Commercial Support . 8
3.5 GeoMOOSE Demo . 8
3.6 Downloads . 8

4 GeoMOOSE News 11
4.1 3/25/2011 - GeoMOOSE 2.4RC1 Ready for Download . 11
4.2 2/18/2010 - GeoMOOSE 2.2 Officially Released . 11
4.3 2/18/2010 - Web Mercator Demo Added . 11
4.4 2/3/2010 - NEW WEBSITE! . 11
4.5 2/3/2010 - GeoMOOSE 2.2 RC1 Released . 11
4.6 10/9/2009 - GeoMOOSE 2.0.1 Released . 12
4.7 8/20/2009 - Updated Documentation . 12
4.8 7/21/2009 - GeoMOOSE 2.0 Released . 12

5 More Information About GeoMOOSE 13
5.1 GeoMOOSE License . 13
5.2 Gallery . 13
5.3 Mailing Lists . 14
5.4 Commercial Support . 14
5.5 GeoMOOSE Demo . 14
5.6 Downloads . 14

6 GeoMOOSE Documentation 17
6.1 References and Write-Ups . 17
6.2 Service Documentation . 54
6.3 Extensions Documentation . 57
6.4 Helpful How To’s . 59
6.5 Release Notes . 72

7 Indices and tables 75

i

ii

GeoMOOSE Documentation, Release 2.X

Welcome to the GeoMOOSE website. For first time users, we hope this site is easy to use and understand. For
returning users, we hope this is a pleasant new experience. This new format for the website has been chosen for its
ease of maintenance, ease of portability, and compact delivery size.

CONTENTS 1

GeoMOOSE Documentation, Release 2.X

2 CONTENTS

CHAPTER

ONE

WHAT IS GEOMOOSE?

GeoMOOSE is a Web Client Javascript Framework for displaying distributed cartographic data. GeoMOOSE has a
number of strengths including modularity, configurability, and delivers a number of core functionalities in its packages.
GeoMOOSE is also very light weight for servers making it easy to handle a large number of users, with a large number
of layers, and a large number of services without stressing a server.

The GeoMOOSE core is written using JavaScript and HTML. It is entirely possible to run GeoMOOSE with nothing
more than a basic webserver (Nginx, Apache, IIS). But besides the basic client core, GeoMOOSE also comes prepack-
aged with a number of built in services written in PHP. These services add the ability to perform drill-down identify
operations, selection operations, and search datasets. If you have existing scripts that perform similar functions, Geo-
MOOSE can be tuned to work with those services, no matter which language they were written.

Being an open source project GeoMOOSE is also built upon other open source projects:

• MapServer

• OpenLayers

3

http://www.mapserver.org
http://www.openlayers.org

GeoMOOSE Documentation, Release 2.X

4 Chapter 1. What is GeoMOOSE?

CHAPTER

TWO

GEOMOOSE GALLERY

See working examples of real-world GeoMOOSE implementations. By viewing the GeoMOOSE Gallery.

5

GeoMOOSE Documentation, Release 2.X

6 Chapter 2. GeoMOOSE Gallery

CHAPTER

THREE

MORE INFORMATION ABOUT
GEOMOOSE

3.1 GeoMOOSE License

3.1.1 License Summary

The GeoMOOSE license is an MIT based license.

3.1.2 License Text

Copyright (c) 2009-2010, Dan “Ducky” Little & GeoMOOSE.org

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.2 Gallery

We are currently working on porting the gallery to the new website.

Please see the old gallery in the interim.

7

http://www.geomoose.org/moose1/index.php?option=com_weblinks&catid=19&Itemid=27

GeoMOOSE Documentation, Release 2.X

3.3 Mailing Lists

Please join the GeoMOOSE Mailing List The GeoMOOSE Mailing Lists are the best way to contact GeoMOOSE
developers and other users for help.

Please follow this link for information on signing up for the mailing lists.

Developers regularly follow the mailing lists and try to assist users in as immediate fashion as possible.

3.4 Commercial Support

List of companies that offer commercial support as a service. If you would like to be added to this list please email the
GeoMOOSE developer mailing list and we will get your company added.

Companies that offer commercial support for installing, configuration, custom development and hosting:

• Excensus, LLC - Contact Dan “Ducky” LIttle, dan.little ~at~ excensus.com

• SharedGeo

• Houston Engineering, Inc., Contact Brian Fischer, bfischer ~at~ houstoneng.com

3.5 GeoMOOSE Demo

This demo is the standard bearer for the vast majority of GeoMOOSE applications. It features all of the common
features being used and gives the user a good feel for the functionalities delivered by GeoMOOSE.

View the Demo Here

3.6 Downloads

3.6.1 GeoMOOSE 2.X

GeoMOOSE 2.4RC1 is the latest in the GeoMOOSE series.

• Download GeoMOOSE 2.4RC1

• Download GeoMOOSE 2.4RC1 for MS4W

• Download GeoMOOSE 2.4RC1 for MS4W - Web Mercator Demo

GeoMOOSE 2.2 is the latest in the GeoMOOSE series.

• Download GeoMOOSE 2.2

• Download GeoMOOSE 2.2 for MS4W

• Download GeoMOOSE 2.2 for MS4W - Web Mercator Demo

3.6.2 GeoMOOSE 1.X

GeoMOOSE 1.6.1 is the latest in the GeoMOOSE 1.X series

• Download GeoMOOSE 1.6.1

8 Chapter 3. More Information About GeoMOOSE

http://sourceforge.net/mail/?group_id=160935
http://www.sharedgeo.org
http://www.houstonengineeringinc.com
http://www.geomoose.org/demo/geomoose.html

GeoMOOSE Documentation, Release 2.X

• Download GeoMOOSE 1.6.1 for MS4W

Nightly Build Packages

These packages are built nightly from SVN. There are no promises these packages will work as they are built from trunk.

• Download GeoMOOSE Nightly Build

• Download GeoMOOSE Nightly Build for MS4W

• Download GeoMOOSE Nightly Build for MS4W - Web Mercator Demo

Other Packages

If you’re having problems with the download links above or are looking for an older package check here

MS4W Installation Note

Prior to unzipping the folder, please ensure you have the MS4W package installed on configured. There are installation
instructions located here.

Note: The MS4W package can also be downloaded from http://www.maptools.org.

If you are upgrading from a previous GeoMOOSE version, ensure you back up all files prior to extracting this zip
archive.

3.6.3 SourceForge / SVN

GeoMOOSE SourceForge Page

GeoMOOSE maintains a project page on SourceForge. We also use SourceForge for our download host. On the
sourceforge project page you can find the most current information on checking out the latest version of the code. The
current branch is “moose2-trunk”.

3.6. Downloads 9

http://www.maptools.org
http://sourceforge.net/projects/geomoose/

GeoMOOSE Documentation, Release 2.X

10 Chapter 3. More Information About GeoMOOSE

CHAPTER

FOUR

GEOMOOSE NEWS

4.1 3/25/2011 - GeoMOOSE 2.4RC1 Ready for Download

After over a year we have assembled the first release candidate for GeoMOOSE 2.4. This integrates a lot of minor
enhancements and fixes that have been contributed to the code, please download and test!

4.2 2/18/2010 - GeoMOOSE 2.2 Officially Released

The offical GeoMOOSE 2.2 Release has arrived! This is the version is worth the upgrade from any 1.X series of
GeoMOOSE installations. View the full release notes: GeoMOOSE 2.2 Release.

4.3 2/18/2010 - Web Mercator Demo Added

To show case the new capabilities of 2.2, including use of Web Mercator layers, we’ve put together a new demo.
GeoMOOSE Demo

4.4 2/3/2010 - NEW WEBSITE!

The new website is much improved:

• We have live demos.

• A new Gallery!

• A new Trac ticketing system that allows any GeoMOOSE user to submit a ticket to GeoMOOSE develop-
ers.

4.5 2/3/2010 - GeoMOOSE 2.2 RC1 Released

This is THE real 2.2 update. This is the first RC, we will take another week for bugs to be filed in the new Trac system.
View the GeoMOOSE 2.2 Release and check out all the new features!

11

GeoMOOSE Documentation, Release 2.X

4.6 10/9/2009 - GeoMOOSE 2.0.1 Released

Great update! Download and Install! View The GeoMOOSE 2.0.1 Release.

4.7 8/20/2009 - Updated Documentation

We’ve added some important new documentation. UN*X installation instructions (for packages starting with 2.0.1)
and a comprehensive list of configuration options that can be set in the mapbook. Check ‘em out!

4.8 7/21/2009 - GeoMOOSE 2.0 Released

GeoMOOSE 2.0 released! See downloads to get your copy. Also, we’ve rolled out this shiney new website!

12 Chapter 4. GeoMOOSE News

CHAPTER

FIVE

MORE INFORMATION ABOUT
GEOMOOSE

5.1 GeoMOOSE License

5.1.1 License Summary

The GeoMOOSE license is an MIT based license.

5.1.2 License Text

Copyright (c) 2009-2010, Dan “Ducky” Little & GeoMOOSE.org

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.2 Gallery

We are currently working on porting the gallery to the new website.

Please see the old gallery in the interim.

13

http://www.geomoose.org/moose1/index.php?option=com_weblinks&catid=19&Itemid=27

GeoMOOSE Documentation, Release 2.X

5.3 Mailing Lists

Please join the GeoMOOSE Mailing List The GeoMOOSE Mailing Lists are the best way to contact GeoMOOSE
developers and other users for help.

Please follow this link for information on signing up for the mailing lists.

Developers regularly follow the mailing lists and try to assist users in as immediate fashion as possible.

5.4 Commercial Support

List of companies that offer commercial support as a service. If you would like to be added to this list please email the
GeoMOOSE developer mailing list and we will get your company added.

Companies that offer commercial support for installing, configuration, custom development and hosting:

• Excensus, LLC - Contact Dan “Ducky” LIttle, dan.little ~at~ excensus.com

• SharedGeo

• Houston Engineering, Inc., Contact Brian Fischer, bfischer ~at~ houstoneng.com

5.5 GeoMOOSE Demo

This demo is the standard bearer for the vast majority of GeoMOOSE applications. It features all of the common
features being used and gives the user a good feel for the functionalities delivered by GeoMOOSE.

View the Demo Here

5.6 Downloads

5.6.1 GeoMOOSE 2.X

GeoMOOSE 2.4RC1 is the latest in the GeoMOOSE series.

• Download GeoMOOSE 2.4RC1

• Download GeoMOOSE 2.4RC1 for MS4W

• Download GeoMOOSE 2.4RC1 for MS4W - Web Mercator Demo

GeoMOOSE 2.2 is the latest in the GeoMOOSE series.

• Download GeoMOOSE 2.2

• Download GeoMOOSE 2.2 for MS4W

• Download GeoMOOSE 2.2 for MS4W - Web Mercator Demo

5.6.2 GeoMOOSE 1.X

GeoMOOSE 1.6.1 is the latest in the GeoMOOSE 1.X series

• Download GeoMOOSE 1.6.1

14 Chapter 5. More Information About GeoMOOSE

http://sourceforge.net/mail/?group_id=160935
http://www.sharedgeo.org
http://www.houstonengineeringinc.com
http://www.geomoose.org/demo/geomoose.html

GeoMOOSE Documentation, Release 2.X

• Download GeoMOOSE 1.6.1 for MS4W

Nightly Build Packages

These packages are built nightly from SVN. There are no promises these packages will work as they are built from trunk.

• Download GeoMOOSE Nightly Build

• Download GeoMOOSE Nightly Build for MS4W

• Download GeoMOOSE Nightly Build for MS4W - Web Mercator Demo

Other Packages

If you’re having problems with the download links above or are looking for an older package check here

MS4W Installation Note

Prior to unzipping the folder, please ensure you have the MS4W package installed on configured. There are installation
instructions located here.

Note: The MS4W package can also be downloaded from http://www.maptools.org.

If you are upgrading from a previous GeoMOOSE version, ensure you back up all files prior to extracting this zip
archive.

5.6.3 SourceForge / SVN

GeoMOOSE SourceForge Page

GeoMOOSE maintains a project page on SourceForge. We also use SourceForge for our download host. On the
sourceforge project page you can find the most current information on checking out the latest version of the code. The
current branch is “moose2-trunk”.

5.6. Downloads 15

http://www.maptools.org
http://sourceforge.net/projects/geomoose/

GeoMOOSE Documentation, Release 2.X

16 Chapter 5. More Information About GeoMOOSE

CHAPTER

SIX

GEOMOOSE DOCUMENTATION

This is the new GeoMOOSE documentation repository. We are starting with the new GeoMOOSE 2 documentation
and will work to integrate all of the tutorials.

6.1 References and Write-Ups

6.1.1 GeoMOOSE Roadmap

The development team for GeoMOOSE put together for a roadmap for the next few foreseeable versions of Geo-
MOOSE. This list is subject to change depending upon available funding and interest of contributors. Here’s what has
been targeted for each version:

GeoMOOSE 2.0 Final Release (targeted for June, 2009)

This will primarily consist of bug fixes identified from the beta release. Features in this release include; performance
enhancements, new configuration files, integration with OpenLayers library, zoom navigation tools, measure tools,
layer controls (tip, max/min scale, opacity and legends), identify service, itemquery service, buffer service, select
service, mailing labels service, print service, popup service, feature report service, ability to define your own tabs and
projects and feature editor service using PostGIS. A unified demo combining the old state and county demos. Update
website and implement trac for bug reporting and feature requests

GeoMOOSE 2.2 Release (targeted for Fall of 2009)

• geocoder service using google maps api (contributed)

• query builder service (partially funded)

• more documentation

• support for tilecache layers

• saving user state for layers and location

• animation for WMS-T layers

• support for Google maps layers

• ability to add markers to the map

• document the GeoMOOSE api

• add/remove map services

17

GeoMOOSE Documentation, Release 2.X

• KML output

• wrapping text of long fields in the feature report

GeoMOOSE 2.4 Release (no set target date)

New print service based on Cario library (need to wait for MapServer 6.0 release)

GeoMOOSE 3.0 Release (no set target date)

Possible integration with Ruby on Rails framework (need to discuss this further)

6.1.2 Mapbook Reference Guide

The mapbook document is an XML file that is used as the configuration file for a GeoMOOSE application. It configures
things such as map sources, layers, services and tools in the application. For an example of a mapbook, please refer to
the GeoMOOSE demo and the mapbook.xml file in the conf folder.

This reference guide explains the structure, elements, and attributes of the Mapbook XML tags, and how they effect the
user interface. GeoMOOSE version 2.0 looks to extend the capabilities and ease of configuration from GeoMOOSE
1.x series and therefore a new version of the mapbook format was required to support all of those features.

<mapbook>

All version 2.0 mapbooks should express themselves by using the ‘version’ tag. GeoMOOSE will check the version
attribute at startup and if the minimum version requirement is not met, GeoMOOSE will alert the user with an error.
This makes the version attribute required.

The <mapbook> tag contains 6 child elements. Each of these child elements can have their own child elements and
are described below.

• <configuration> : The <configuration> tag is used to specify user interface startup settings.

• <map-source> : The <map-source> tag is used to specify a single or collection of layers in GeoMOOSE.

• <layer-controls> : The <layer-control> tag is used to link a layer control to a service. As of GM2 the only layer
control available are popups.

• <service> : The <service> tag is used to define a service such as select, printing and identify.

• <catalog> : The <catalog> tag is the layers listing found in the information panel.

• <toolbar> : The <toolbar> tag is the tools that are displayed on the user interface toolbar.

<configuration>

The configuration tag is used to specify user interface startup settings and other application settings. The configuration
tag has <param> children. <param> elements have a simple format, a “name” attribute which specifies the interface
setting to change and then CDATA that specifie the values. Here is an example from the GeoMOOSE Demo:

<configuration>
<param name="mapserver_url">/cgi-bin/mapserv.exe</param>
<param name="mapfile_root">/ms4w/apps/geomoose2/maps</param>
<param name="projection">EPSG:26915</param>
<param name="zoomto[’Jump To:’]"><![CDATA[

18 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

{
’Dakota County’ : [521238.614537864,4924218.86673578,473921.947801381,4974430.36885032],
’Parcel Data’ : [497205.409367,4923984.423582,477595.805945,4941970.52988],
’Full State of MN’ : [189783.560000,4816309.330000,761653.524114,5472346.500000]

}
]]></param>
<param name="max_extent">189783.560000,4816309.330000,761653.524114,5472346.500000</param>
<param name="initial_extent">497205.409367,4923984.423582,477595.805945,4941970.52988</param>
<param name="layer_controls.up.on">false</param>
<param name="layer_controls.down.on">false</param>
<param name="layer_controls.legend.on">false</param>

</configuration>

<map-source>

The map-source tag is used to specify a single or collection of layers in GeoMOOSE. All map-sources have two
required attributes: type – The type attribute determines what other children are required and tells GeoMOOSE what
type of mapping service with which to communicate. Valid types are:

• mapserver – This type of layer is meant to communicate with the default mapserver as specified in config.js.

– <file> - Layers of type ‘mapserver’ require a value <file> child specifying the location of the mapfile on
disk. Mapfiles can be specified with relative paths in <file> tags.

• wms – This type of layer is meant to communicate with Web Mapping Service servers. This is the OGC
standard for serving raster images over the web. Many sites deliver WMS services that can be consumed by a
GeoMOOSE application. If the type is a WMS data source an optional attribute can also be specified to request
the images as tiles. This attribute is tiled=true.

– <url> - Layers of type ‘wms’ require a <url> child specifying the URL of the WMS.

– name – This is the name used internally, by GeoMOOSE to refer to the layer. Unlike GeoMOOSE 1.0, the
title of the layer displayed in the Catalog is not a one-to-one relationship with the entry in the mapbook.
This allows greater flexibility in divorcing the display-order of layers in the map and display order in the
catalog.

– queryable – This is an optional attribute the tells GeoMoose whether a WMS map-source type is queryable.
This attribute is only need for WMS map-source types. Valid options are queryable=’true/false’.

All map-source types support two children:

• <param> – The ‘param’ child will add or change parameters sent over the URL to a <map-source>. This can be necessary to change mime-types for WMS services or pass various miscellaneous settings to a mapserver mapfile. All ‘param’ children have two required attributes:

– name – This is the name that will be used in the URL.

– value – This is the value the name will be set to in the URL.

– <layer> (required) – At least one layer child is required for each map-source. Even if a mapserver-
type layer is used where all the layers are set to ‘default’ in the mapfile, it is necessary to create a layer
child representing all of the layers. Layer elements have one required attribute, name. For a WMS
map-source, this refers to a layer as specified in the GetCapabilities document. For a Mapserver map-
source, this refers to the name of a layer in the Mapfile. If a Mapfile has all of the layers set to default
or all of the layers should be on or off as a whole, then the ‘name’ should be set to ‘all.’ <layer>s also
have a “visible” attribute which defaults to false. To set a layer to default visibility, set “visible” to
true.

Examples (more can be found in the GeoMOOSE demo mapbook):

6.1. References and Write-Ups 19

GeoMOOSE Documentation, Release 2.X

<map-source path="county" type="mapserver">
<file>./countydata/feedlots.map</file>
<layer name="all"/>

</map-source>

<map-source name="basemap" type="mapserver">
<file>./basemap/basemap.map</file>
<layer name="cities"/>
<layer name="counties"/>
<layer name="roads"/>
<layer name="lakes"/>
<layer name="streams"/>
<layer name="ditches"/>
<layer name="TLGAreaLandmarks"/>
<layer name="TLGLandmarkPoints"/>

</map-source>

<map-source path="metro" type="wms">
<url>http://www.datafinder.org:80/wmsconnector/com.esri.wms.Esrimap/MN_MetroGIS_DataFinder_WMS_Water_Resources</url>
<layer name="stream_net_l"/>
<param name="TRANSPARENT" value="TRUE"/>
<param name="FORMAT" value="image/png"/>

</map-source>

map-source‘‘s also support an ‘‘opacity attribute that is a number between 0 and 1 specifying how
transparent the image will be displayed. For example opacity=".5" will display the image from the map-source
as half-transparent.

• buffer attribute. Boolean, defaults to true. When set to “false” the image does not “buffer” around the map,
it is trimmed to the exact size of the map display. Useful for MapServer scalebars.

<service>

The service element is the key to GeoMOOSE’s interoperability. All functions are a type of service (identify, select,
Birdseye view, etc.). Services have attributes to define some of it’s behaviour: * name - This is the internal name of
the service. * display - Sets whether the the service will be displayed while “launching.” It is useful to set this to false
if there is no text-entry required for the service. * title - This title will be displayed automatically in the input tab. *
target - If set then this attribute will display the results in a different window.

Service have one <url> child. The <url> child specifys the URL for of the service for GeoMOOSE to call:

<url>php/idnetify.php</url>

Services each have <step> children. There are two types of steps:

• type=spatial - This type of step allows the layer to. Spatial steps have additional inputs that are used to define additional information about the spatial data:

– name - This attribute specifys the CGI/form variable name in which the representation of the shape
will be stored.

– default - Sets the default tool used for drawing the shape. Valid values: point, line, polygon.

– point | line | polygon | edit-polygon - Turns on/off the various drawing tools. Valid values: true, false.
The default behaviour for these are stored in Configuration.

– format - This specifys the format of the shape:

* =WKT - Use well-known text.

20 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

* =delim - Use a text delimited format.

– jump-start - When true then the service will attempt to start after the shape has been finished.

– reproject - This can be used to specify a shape projection other than the default map projection.

• type=input - This step only allows for the standard inputs.

Steps can have many <input> children. <input> s are very similar to the ones used in HTML forms. All <input> s
require a name attribute and a type attribute. The following documents the various type s of inputs:

• type=extent - Sends the current extent to the service.

• type=hidden - Hidden inputs are not displayed to the user but the value set in the value attribute is sent to the
service.

• type=select - Creates a drop down box. The title attribute sets the label for the drop down. These have the same
<option> children as the HTML <select> elements.

• type=sketches - Sends JSON describing all of the user sketches to a service.

• type=user - These are basic user input text fields. Their default value can be set using the value attribute. The
title attribute sets the label for the text field.

• type=visiblelayers - Sends the list of visible layer paths.

• type=ajax_select - Creates a drop down box populated by a remote server script. These inputs types feature
a <url> child which references the script to call. The script should return HTML-style <option> elements, a
sample return may look like this:

<options>
<option value="a">A</option>
<option value="b">B</option>

</options>

• type=precision - Sends the precision of the map to the service.

<layer-controls>

<catalog>

The GeoMOOSE Catalog, or Catalog, is the layers listing found in the table of contents on the user interface. The
catalog is represented by the <catalog> child inside of the mapbook. The catalog has two types of children:

• layer – The layer child creates an entry in the catalog for the user to turn on and off layers. The layer child has
two required attributes:

• show-legend - When set to “true” the legend will be displayed by default. CONFIGURA-
TION.layer_controls.legend.on or the “legend” must be set to “true” for this to function.

• src – This is attribute tells GeoMOOSE where to find the source for the layer. The source of the layer is the
‘name’ attribute specified in the <map-source> plus a ‘/’ combined with the name attribute of the layer as
specified in the <map-source>’s <layer> child. In the examples above, there are two complete paths:

county/all
metro/stream_net_1

Multiple paths can also be specified to turn on/off multiple layers with a single control. To do this, the paths need to
be divided with colons. If both layers in the example above were to be turned on simultaneously the ‘path’ attribute
would be specified as follows:

6.1. References and Write-Ups 21

GeoMOOSE Documentation, Release 2.X

county/all:metro/stream_net_1

• title – This is the text that will be shown in the Catalog to represent the layers specified in the path attribute.

Layers also have an optional attribute:

• status – Layers can be turned on by default by setting ‘status’ to ‘on’. This defaults to ‘off’.

• group – The ‘group’ child creates folders in the catalog. Groups contain layer children and can also contain
other groups. Groups have two attributes, both of which are optional:

• expand – A group can be started as ‘open’ where the contents of the group are listed. The ‘expand’ attribute can
either be ‘true’ or ‘false’. This defaults to ‘false’.

• multiple – While most layers are stacked, there may be a set of layers that should not be stacked on top of each
other. The most common example is background layers. In the case of background layers, only one should be
selected at a time. To do this in GeoMOOSE, set the group’s ‘multiple’ attribute to ‘false’. This defaults to
‘true’.

• metadata – When set to ‘true’, the metadata tag will be included as described below. This defaults to ‘false’.

Layers May Optionally Have related Metadata Via a “metadata” tag: * <metadata>URL</metadata> - The URL refers
to the location of the metadata for this catalog item.

<toolbar>

GeoMOOSE now has a better defined toolbar. Just as the catalog and layer definitions have become more separated,
so too has the toolbar and service definitions. The toolbar is specified using the <toolbar> child. The <toolbar> child
has no attributes and two kind of child, the <tool> child and the <drawer> child.

<tool> children define the tool in the toolbar and tells geomoose what to do when the tool is clicked. <Tool> children
have a number of attributes:

• name – The name is the name for the tool.

• title - This is the title displayed in the tool bar if the text is shown and in the mouseover popup.

• selectable - This is a boolean attribute. Examples of “selectable” tools: Identify, Select, Zoom. Examples of
tools that are not usually “selectable”: Print, Search Parcels.

• type – This attribute determines whether the tool calls an internal function or a service as defined in a ‘service’ child. There are three valid types, ‘internal’, ‘javascript’, and ‘service.’

– type = ‘service’ adds an additional required attribute, ‘service’ which is the name of the service spec-
ified in the <service> tag.

– type = ‘javascript’ has no additional required attributes but the node’s value should contain javascript
to be executed when the tool is selected.

– type = ‘internal’ adds an additional required attribute, ‘action’ which is the type of action to be taken current valid values are:

* zoomin – start the zoomin tool

* zoomout – start the zoom-out tool

* pan – start the pan tool

* previous – step back to the previous extent

* next – step forward to the next extent if jumped back using the ‘previous’ tool.

* measure – start the measure length tool.

22 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

* measurearea – start the measure area tool.

* fullextent – zoom to the predefined initial extent of the map.

* draw_polygon - start the polygon drawing tool for the sketch layer.

* draw_line - start the line drawing tool for the sketch layer.

* draw_point - start the point drawing tool for the sketch layer.

* draw_remove - start the tool for removing shapes from teh sketch layer.

* draw_edit - start the sketch layer shape editing tool

* draw_edit_attributes - start the edit attribute tool. This is the tool that allows the user to change
the shape colors and opacity.

<drawer> children contain tools and create a small “drop down menu” in the toolbar to compress the space required
for related tools. For example the drawing tools can easily be combined into a <drawer>:

<drawer>
<tool name="draw_polygon" title="Draw Polygon" type="internal" action="draw_polygon"/>
<tool name="draw_line" title="Draw Line" type="internal" action="draw_line"/>
<tool name="draw_point" title="Draw Point" type="internal" action="draw_point"/>
<tool name="draw_remove" title="Remove Drawing" type="internal" action="draw_remove"/>
<tool name="draw_edit" title="Edit Drawing" type="internal" action="draw_edit"/>

</drawer>

Specifying Icons for a Tool in the Toolbar

Every tool in the toolbar is given a unique ID that allows it to be referenced in CSS. The icons are all specified as
backgrounds in the htdocs/css/user_tools.css file. Editing that will show examples of how to specify the icons for a
new tool. This change was made to support the use of CSS sprites to increase the load time of GeoMOOSE.

Here is an example featuring the “Print” tool:

#tool-print {
width: auto;
background-position: 2 2;
background-image: url(’../images/toolbar/printer.png’);

}

#tool-print .ToolContent {
display: -moz-inline-box;
display: inline-block;
width: auto;

}

#tool-print .ToolText {
display: block;
padding-top: 3px;
padding-right: 3px;

display: -moz-inline-box;
display: inline-block;

}

6.1. References and Write-Ups 23

GeoMOOSE Documentation, Release 2.X

6.1.3 GeoMOOSE Configuration Options

Introduction

GeoMOOSE has a plethora of configuration options. All of them can be changed in the mapbook and it is possible
to highly customize the interface without writing a single line of code. This document attempts to keep up with the
various settings options in order to give the user more control over their GeoMOOSE installation. Organization is a
little rocky as it mirrors the internal structure and nothing that was ever designed to be human readable. Please bear
with us as the documentation gets updated.

How to Change a Setting

Every Mapbook has a <configuration> section. In the <configuration> section there are multiple <param> fields. The
<param> fields are how settings are changed from their defaults. For example, to add some HTML to the Links bar:

<configuration>
...
<param name="links_bar_html"><![CDATA[This is some html, with a link to Google!]]></param>
...

</configuration>

The Settings

links_bar_html

HTML Text. Default is ‘’. Changes the HTML of the “links bar” formally the “menu bar” in the interface.

waiting_html

HTML Text. Default is ‘Loading...’. Changes the HTML of the waiting message while services are running.

mapserver_url

String. MapServer URL used when calling type=”mapserver” map-source’s.

mapbook

String. Default is ‘php/getmapbook.php’. The URL to the mapbook, this is the only configuration setting that cannot
be changed by the mapbook.

fractional_zoom

Boolean. Default is false. This allows the Map to use fractional scales like GeoMOOSE 1.X. This functionality,
however, breaks tiled layers.

24 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

scales

Array of Floating Point Numbers. The scales are actually ground units per pixel resolution settings and not true scales.
This array is what sets the “scales” shown on the map.

max_extent

Array of Floating Point Numbers. An array, in the format of [MinX, MinY, MaxX, MaxY] that sets the maximum extents of the map. You can set this in the mapfile without using the brackets but using commas to delineate the members of the array::
<param name=”max_extent”>[-180,-90,180,90]</param>

initial_extent

Array of Floating Point Numbers. This sets the intial view for the map.

projection

String. The projection of the map, defaults to UTM-15N (EPSG: 26915). GeoMOOSE is primarily developed in the
state of Minnesota, USA, so many of our test datasets are in UTM-15N. The default Projection is this way for no other
reason than that.

ground_units

String. Default is ‘m’. Set to ‘m’, ‘in’, ‘mi’, ‘dd’, to reflect the projection being used.

coordinate_display.xy

Boolean. Default is true. Toggles the display of the ground unit X,Y in the footer of the map.

coordinate_display.latlon

Boolean. Default is true. Toggles the display of the latitude and longitude in the footer of the map.

coordinate_display.usng

Boolean. Default is true. Toggles the display of the United States National Grid Coordinates in the footer of the map.

tabs

Associative Array. The keys of the associative array are the titles of the tabs and the values is the DIV that represent
the tab. This would be an example setting that is different than the default:

<param name="tabs"><![CDATA[
{

’Layers’ : ’layers-tab’,
’Information’ : info-tab’

}]]></param>

6.1. References and Write-Ups 25

GeoMOOSE Documentation, Release 2.X

default_tab

String. Defaults to ‘Catalog’. References the title of the tab that should be shown by default.

catalog_name

String. Defaults to ‘Catalog’. Reference the title of the tab that should be populated with the layers list.

catalog.toggle_controls

Boolean. Defaults to true. When set to true, clicking on the layer name allows the controls below the layer to be turned
on or off. When set to false the visibility of the controls is set by catalog.show_controls.

catalog.show_controls

Boolean. Defaults to true. Sets whether or not the controls below the layer names should be visible.

show_service_settings_in

String. Defaults to ‘Services’. Reference the title of the tab that should display the prompts for a service when it is
called.

group_checkboxes

Boolean. Defaults to true. Toggles whether group checkboxes are displayed.

zoomto

Associative Array of Associative Arrays. This is the settings that populate the “jump to” drop downs. Best to explain
this by example. If you have difficulties please email the mailing list:

<param name="zoomto[’Jump To:’]"><![CDATA[
{

’Dakota County’ : [521238.614537864,4924218.86673578,473921.947801381,4974430.36885032],
’Parcel Data’ : [497205.409367,4923984.423582,477595.805945,4941970.52988],
’Full State of MN’ : [189783.560000,4816309.330000,761653.524114,5472346.500000]

}
]]></param>

jumpto_scales

Associative Array. This associative array features keys that are shown in the “scale drop down” and the scale itself is
the value.

startup_service

String. When set, the named service will be called on startup.

26 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

layer_controls.up.on

Boolean. Defaults to true. Toggles the layer control to move the layer up on the image stack.

layer_controls.down.on

Boolean. Defaults to true. Toggles the layer control to move the layer down on the image stack.

layer_controls.fade.on

Boolean. Defaults to true. Toggles the layer control to fade the layer out.

layer_controls.unfade.on

Boolean. Defaults to true. Toggles the layer control to unfade the layer out.

layer_controls.refresh.on

Boolean. Defaults to false. Toggles the layer control to allow the user to manually refresh the layer.

layer_controls.cycle.on

Boolean. Defaults to false. Toggles whether the layer control to refresh the layer every layer_controls.cycle.seconds
seconds.

layer_controls.cycle.seconds

Floating Point Number. Defaults to 10. The number of seconds between layer refreshes when used with the cycle tool.

layer_controls.legend.on

Boolean. Defaults to true. Toggles whether to show the legend control by default.

layer_controls.metadata.on

Boolean. Defaults to false. Toggles whether or not to show the link to a layer’s metadata.

reference_map.enabled

Boolean. Defaults to true. Toggle whether the refrence map should be added to the map.

reference_map.maximized

Boolean. Defaults to true. Toggle whether the reference map is expanded by default.

6.1. References and Write-Ups 27

GeoMOOSE Documentation, Release 2.X

reference_map.width

Integer. Width of the reference map.

reference_map.height

Integer. Height of the reference map.

reference_map.minimum_ratio

Integer. Minimum ratio of display between the main map and the reference map.

reference_map.maximum_ratio

Integer. Maximum ratio of display between the main map and the reference map.

scale_line.enabled

Boolean. Defaults to true. Toggle whether the scale line is shown on the may.

scale_line.top_units

String. Defaults to ‘ft’. Possible unit values are ‘m’, ‘in’, ‘km’, ‘ft’, ‘mi’.

scale_line.bottom_units

String. Defaults to ‘mi’. Possible unit values are ‘m’, ‘in’, ‘km’, ‘ft’, ‘mi’.

scale_line.width

Integer. Defaults to 200. Defines the width of the scale line on the map.

drawing_tools.default_fill

Color. Defaults to ‘green’. Sets the default fill for all sketches.

drawing_tools.default_stroke

Color. Defaults to ‘red’. Sets the default stroke for all sketches.

drawing_tools.default_opacity

Floating Point Number between 0 and 1. Defaults to .8. Sets the opacity of the sketches.

28 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

messages.requirement_failure

String. Message displayed when a service requirement was not met.

messages.invalid_tool

String. Displayed when a drawing tool that is not defined is called. The string %TOOL% will be replaced with the
name of the offending tool.

messages.service_config_error

String. Is displayed when there is an error with the service being called.

messages.service_not_found

String. Message displayed when a service is called but is not defined in the mapbook. The string %SERVICE% will
be replaced with the name of the invalid service.

messages.invalid_response

String. Messaged displayed when a service does not return a valid answer from the server.

messages.mapbook_version

String. Error presented to the user if they try to load a mapbook that is not compliant with the current GeoMOOSE
version. The string %VERSION% will be replaced with the mapbook’s version.

messages.mapbook_required

String. The error shown when a required <param> setting is missing in the mapbook. The string %FIELD% will be
replaced with the required field’s name.

messages.mapbook_param_error

String. When a param cannot be properly set due to any sort of error, this error message will be displayed. %FIELD%
will be replaced with the “name” attribute from the param.

popups.autosize

Boolean. Sets whether or not popups are autosized when added to the map.

6.1. References and Write-Ups 29

GeoMOOSE Documentation, Release 2.X

6.1.4 Changing the Projection

GeoMOOSE 2 uses the Proj4js library to perform all of its projection work. This is much more robust than the
older GeoMOOSE reprojection library but requires a much different setup to include a different projection within the
application.

Many applications may use a well-known projection. Most of these projections are assigned an EPSG code.

Step 1: Determine your projection.

This may have already been done for you. Having a predetermined projection makes this step quick and easy. However,
some projections are not found in the standard collection of projections and you will have to define your own. Proj4js
uses the same projection parameter style as the Proj4 C-library. If you need to make a custom projection, create one
using an EPSG code of greater than 100000. For example, I may have a projection called “Duck’s Projection.” If I
were to use “Duck’s Projection” I would need to define it using proj params (these are form a randomly select filter):

+proj=tmerc +lat_0=38 +lon_0=125 +k=1 +x_0=200000 +y_0=500000 +ellps=bessel +units=m +no_defs

Step 2: Create a Projection Javascript File.

You can create this file in the htdocs directory but it should be named “EPSGXXXXX.js” where “XXXXX” is the
number for your projection. If this is a custom projection give it a number above 100000. In side of this file you
should have:

Proj4js.defs["EPSG:XXXXX"] = "+proj=tmerc +lat_0=38 +lon_0=125 +k=1 +x_0=200000 +y_0=500000 +ellps=bessel +units=m +no_defs";

Again, substitute your own EPSG number and projection information above.

Step 3: Change the mapserver parameter for your projection.

In the <configuration> section of the mapbook book you will need to change/create the following line:

<param name=”projection”>EPSG:XXXXX</param>

Step 4: Include the Javascript File

Find the section in the <head> of geomoose.html that states, “Include your projection here” and place some code:

<script type=”text/javascript” src=”EPSGXXXXX.js”></script>

For more information on finding projections and projection definition strings visit http://www.spatialreference.org.

6.1.5 Settings.ini Reference Guide

The settings.ini file found in the conf folder is a text document used as the general configuration file for a GeoMOOSE
application. It configures things such as projection, paths, mailing labels. For an example of a settings.ini file, please
refer to the GeoMOOSE demo and the file in the conf folder. This reference guide explains the optional settings.

[defaults]

• mapbook – location of default mapbook

30 Chapter 6. GeoMOOSE Documentation

http://www.spatialreference.org

GeoMOOSE Documentation, Release 2.X

[map]

• projection – EPSG code of coordinate system for the map

[paths]

• root – root for the mapfiles

• temp – web accessible location of the temp files relative to the root of the domain

[identify]

This setting specifies which metadata parameters in the mapfiles are used for the identify service output templates.

• identify_header=identify/header.html

• identify_footer=identify/footer.html

• wms_header=identify/wms_header.html

• wms_record=identify/wms_record.html

• wms_footer=identify/wms_footer.html

[select]

• highlight_map – this setting specifies which mapfile should be used to symbolize the selected or highlight feature
on the map

[itemquery]

This setting specifies which metadata parameters in the mapfiles are used for the itemquery service output templates.

• itemquery_header=itemquery/header.html

• itemquery_footer=itemquery/footer.html

• itemquery_miss=itemquery/miss.html

[mailing_labels]

These setting specify formatting options for the labels generated from the mailing labels service. Specifies how many
rows/columns to print per page:

• label_rows=10

• label_columns=3

Specifies page layout information (only applies to PDF Format):

• label_origin_x=.25

• label_origin_y=.5

• label_width=2.5

• label_height=1

Specifies Font for the label output (only applies to PDF Format):

6.1. References and Write-Ups 31

GeoMOOSE Documentation, Release 2.X

• label_font=Arial

• label_font_size=8

Specifies the settings for the actual lines of the label. The items in parentheses relate to the data source in the mailing
labels service. Items must be enter with parentheses and case sensitive field name.

• label_lines=3

• label_line_1=%OWNER_NAME%

• label_line_2=%BLDG_NUM% %STREETNAME% %SUFFIX_DIR% %STREETTYPE%

• label_line_3=%CITY%, MN %ZIP%

If this is set to “true” then any blank lines in the labels will be “collapsed” in the PDF output.

• label_lines_collapse=true

6.1.6 Service Communication Protocol Reference

GeoMOOSE service’s ‘talk back’ to GeoMOOSE using either pure HTML or by using the GeoMOOSE 2.0 Service
XML format. If a service returns content of type text/html then GeoMOOSE will simply display such content in the
‘Results’ tab. This type of return has very limited potential as it does not provide a way to control functions in the
GeoMOOSE interface. In GeoMOOSE 1.0 we addressed this by using an alternate GeoMOOSE namespace embeded
in the HTML. While this was a very technical and generally ‘neat’ solution it was very difficult to explain and XML
was quite under powered as a way to allow services to properly manipulate the user interface. GeoMOOSE 2.0 fixes
this by using a new XML format that allows the services to specify Javascript to be run upon loading and HTML to
display in the interface. This communication protocol is useful for developers writing their own services.

<results>

The document element is mainly ignored for now. But it has three children:

• <script>

• <popup>

• <html>

<script>

Contains a single CDATA section that contains Javascript to be executed upon loading the interface. Javascripts in the
<script> tag SHOULD NOT call methods or depend on attributes in GeoMOOSE objects. GeoMOOSE changes all of
the time and calling specific methods (like those in the Catalog) may change calling format or even names. There is a
limited set of functions that will be supported and whose API will not change without significant notice to users and
developers. Those are contained in the single “GeoMOOSE” object. Other examples using this protocol can be found
in the layer query templates such as /maps/landrecords/parcels_popup.html in the GeoMOOSE demo.

<popup>

Popups contain a single CDATA section that contians HTML to be displayed in a popup. Popups have four attributes:

• x – The “east/west” position of the popup in ground units.

• y - The “north/south” potion of the popup in ground units.

• width – The pixel width of the popup.

32 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

• height – The pixel height of the popup.

Example:

<popup x="-93.129" y="42.111" w="200" h="200">
This is a cool popup!

</popup>

<html>

Contains a single CDATA section that contains HTML to be displayed in the Results Tab.

Example:

Content-type: application/xml
<results>

<script><![CDATA[
GeoMOOSE.refreshLayers(’/wms/metro/stream_net_1’);
alert(’I also made an alert!’);

]]></script>

<html><![CDATA[
I refreshed a layer!

]]></html>
</results>

6.1.7 GeoMOOSE Feature Editor

What is the GeoMOOSE Feature Editor?

The GeoMOOSE Feature Editor allows the user to create, modify, and delete the geometry and attributes of vector
features stored in a PostGIS database. The feature layers can be points, lines, or polygons. You can have as many
layers set up for editing as you like, each with a separate table.

Setting Up the Feature Editor

To setup a layer for editing in GeoMOOSE it requires configuring ahead of time. First, the layer needs to be stored in
a PostGIS database. Other relational database systems may be supported in the future. Shapefiles are not editable as
they cannot be properly shared for editing amongst multiple users. Second, the layer’s table in PostGIS needs to have
a primary key, a sequence for generating keys, and have an entry in the PostGIS geometry_columns table. Finally, the
layer must be configured for the GeoMosse Feature Editor by creating an “ini” for the editor script, adding the proper
service entries to the mapbook, and finally configuring a Mapserver identify record template.

Setting up the Layer’s PostGIS Table for Editing

Teh layer’s table requires a primary key in the table, a sequence that works as the iterator for that primary key, and a
geometry column. You may add other columns as well. The SQL to create an example would be as follows:

To create the table, the CONSTRAINT .. PRIMARY KEY directive specifies the primary key (in this example,
polygon_id) for the table:

6.1. References and Write-Ups 33

GeoMOOSE Documentation, Release 2.X

CREATE TABLE test_polygons
(

polygon_id integer NOT NULL,
title character varying(100),
owner character varying(100),
wkb_geometry geometry,
CONSTRAINT pk_test_polygons PRIMARY KEY (polygon_id)

)

To create the sequence:

CREATE SEQUENCE test_polygons_seq;

Now add the table to the PostGIS register of geometry_columns. This may vary depending on your dataset, but for the
purposes of the example this is what was used:

insert into geometry_columns values (’’, ’public’, ’test_polygons’, ’wkb_geometry’, 2, -1, ’GEOMETRY’);

Create a Mapfile for the Layer

There are two files you must create for each editable layer: a mapfile and a .ini file. It is highly rec-
ommended keeping these named the same as the PostGIS table to prevent confusion. In this example
the mapfile name would be “test_polygons.map”. To keep things organized you may wish to put the
files for each layer into their own folder. For example, create a “test_polygons” directory and then place
“test_polygons.map” and “identify.html” (see details below) in the “test_polygons” directory. A sample
mapfile:

MAP
SIZE 400 400
EXTENT 427632.500000 4893613.330000 560300.922104 5015936.680000
UNITS METERS
SYMBOLSET ’../symbols/symbol.sym’
STATUS ON

IMAGETYPE GIF

TRANSPARENT TRUE

LAYER
NAME ’polygons’
TYPE POLYGON
STATUS ON

CONNECTIONTYPE POSTGIS
CONNECTION ’host=192.168.52.1 dbname=geomoose_test user=postgres password=postgres22’
DATA ’wkb_geometry from (select polygon_id, title, owner, astext(wkb_geometry) as wkt_geometry, wkb_geometry from test_polygons) as mytable using unique feature_id’

CLASS
STYLE

SYMBOL ’circle’
OUTLINECOLOR 255 255 0
SIZE 10

END
END

METADATA
’identify_record’ ’identify.html’

34 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

END
END

END

Adding the Layer to the Interface

The first step is to create map-source entry in the GeoMOOSE mapbook that points to the test_polygons mapfile:

<map-source name="poly_editor" type="mapserver">
<file>/var/www/geomoose2/maps/test_polygon/test_polygon.map</file>
<layer name="polygons"/>

</map-source>

Then add a Layer entry to the catalog:

<group title="Editing Layers" expand="true">
<layer title="Polygons" src="poly_editor/polygons"/>

</group>

Setting up the Layer’s .INI file

The .INI file is where all the vital information about the layer’s table is stored for the Feature Editor. All of the
.INI files are stored in GeoMOOSE’s “conf/editor” folder. To continue with the example from earlier, create a
“test_polygons.ini” file. Since each table has a separate host/dbname configuration it is possible for a single Geo-
MOOSE interface to edit layers on multiple different servers without the user knowing the difference.

Example INI file:

; Basic Connection Information
host=192.168.52.1
dbname=geomoose_test
username=postgres
password=postgres22

; Table Information
tablename=test_polygons ; Database table name
geometry_column=wkb_geometry ; Column name from the CREATE TABLE SQL
primary_key_column=polygon_id ; Primary Key Column from CREATE TABLE
primary_key_sequence=test_polygons_seq ; Sequence name from CREATE SEQUENCE
srid=26915 ; SRID for the Dataset in the database

; GeoMOOSE Information
layerpath=poly_editor/polygons ; The full path in GeoMOOSE (same as catalog)

Setting up a Create/Add Service

This may be the most difficult part of setting up the service as it requires the most amount of knowledge on how
GeoMOOSE services are configured. But all tables should follow roughly the same pattern. All of the columns in the
layer’s table are referred to as “feature:[COLUMN NAME]” so if the table as a column named “owner” it is referenced
as “feature:owner” for the name to be used with the editor script.

The service definition starts simple with the header:: <service name=”add_polygon”>

And add a reference to the editor url:

6.1. References and Write-Ups 35

GeoMOOSE Documentation, Release 2.X

<url>php/editor.php</url>

Now, we need a step to tell GeoMOOSE to draw a polygon:

<step type=’spatial’ name=’feature:wkb_geometry’ line=’false’ polygon=’true’ point=’false’ default=’polygon’>
</step>

You can see, above, that the “name” references the name of the geometry column. We also turn off all of the tools
except the polygon drawing tool by specifying “false” values for the “line” and “polygon” attributes. This would
change depending on the dataset (as some layers have a geometry type of points and others lines). The “default”
attribute tells GeoMOOSE to start this step with the “polygon” tool enabled instead of Navigation or other tools.

Then there is a required step to describe which operation we’re performing and the attributes that will be edited:

<step type="input"> <!-- This tells GeoMOOSE there will be user input -->
<input type="hidden" name="op" value="create"/>
<!-- The "op" variable tells the editor which operation to perform: create, update, or delete -->
<input type="hidden" name="table" value="test_polygons"/>
<!-- The "table" refers to the name of the "ini" file. -->
<input type="user" name="feature:title" title="Title:"/>
<input type="user" name="feature:owner" title="Owner:"/>
<!-- These previous two lines refer to columns in the table. -->

</step>

Putting it all together:

<service name="add_polygon">
<url>php/editor.php</url>
<step type=’spatial’ name=’feature:wkb_geometry’ line=’false’ polygon=’true’ point=’false’ default=’polygon’>
</step>
<step type="input">

<input type="hidden" name="op" value="create"/>
<input type="hidden" name="table" value="test_polygons"/>
<input type="user" name="feature:title" title="Title:"/>
<input type="user" name="feature:owner" title="Owner:"/>

</step>
</service>

Finally, the service needs to be exposed on the toolbar with an “Add Polygon” tool:

<toolbar>
...
<tool name=”add_polygon” title=”Add Polygon” type=”service” service=”add_polygon”/>
...

</toolbar>

It’s usually nice to add some CSS to decorate up the Polygon Tool, so something like this might be prudent in ht-
docs/css/user_tools.css:

#tool-add_polygon {
background-image: url(’../images/toolbar/add.png’);
background-position: 2 2;
background-repeat: no-repeat;
padding-left: 2px;

}

#tool-add_polygon .ToolText {
padding: 2px;
display: block;
width: auto;

36 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

}

#tool-add_polygon .ToolContent {
width: auto;

}

Creating the Update Service

While it is nice to create features, it may be necessay to edit those features. Modifying requires setting up a similar
service to creating.

The entry for the Modify Polygon service will look like this:

<service name="modify_polygon">
<url>php/editor.php</url>
<step type=’spatial’ name=’feature:wkb_geometry’ line=’false’ polygon=’true’ point=’false’ default=’point’ edit-polygon=’true’> <!-- It’s necessary to specify that the polygon editor be turned on, the rest of the options are CREATION functions -->

<input type="hidden" name="op" value="update"/>
<!-- This just changes the option to ’update’ instead of ’create’ -->
<input type="hidden" name="table" value="test_polygons"/>
<input type="hidden" name="feature:polygon_id"/>
<input type="user" name="feature:title" title="Title:"/>
<input type="user" name="feature:owner" title="Owner:"/>

</step>
</service>

Creating the Delete Service

This is the easiest service to create as there are no user inputs or spatial steps to define:

<service name="delete_polygon">
<url>php/editor.php</url>
<step type=’input’>

<input type="hidden" name="op" value="delete"/>
<input type="hidden" name="table" value="test_polygons"/>
<input type="hidden" name="feature:polygon_id"/>

</step>
</service>

Create the Identfy.html File

Now get the layer properly identifying in the interface.

identify.html:

<tr bgcolor="#AA55AA">
<td colspan="2">[title] ([polygon_id])</td>

</tr>
<tr>

<td>Owner:</td><td>[owner]</td>
</tr>
<tr>
<td>

Edit
</td>
<td>

6.1. References and Write-Ups 37

GeoMOOSE Documentation, Release 2.X

Delete
</td>
</tr>

The key to the editing functionality is in the links. These links are calling the editing service
definitions with the values “filled in” for the selected object from the identify result. Every different feature type (i.e
table) requires changing this list of attributes to reflect the column names of the specific table.

6.1.8 GeoMOOSE Sprite Generator, Toolbar and Catalog Styles

To make GeoMOOSE more efficient all toolbar and layer controls have been combined into a single image. All of the
tool images are changed by manipulating CSS settings.

The GeoMOOSE Sprite

A “sprite” is a combined image that contains many smaller “sub images.” In older versions of GeoMOOSE every image was stored in its own file. For every image used, the web-browser needed to make a request to the web-server. On an average site this could mean downloading over 100 images files. It was also problematic as some browsers would download the same image multiple times.
To decrease this load we have created a method for creating a sprite and a CSS file that ties together the combined
image and the differing tools.

Explaining the Sprite Layout

The sprite has two columns. The left column is the tool in its “normal” state and the right column contains the tool in
its “selected” state. Each row represents a different tool.

Generating the Sprite

The sprite is generated with the “createSprite.py” script located in the “tools” directory. The “createSprite.py” script
also generates the CSS. The CSS outputs to the standard output. The general operation for generating the sprite is as
follows:

1. .cd tools

2. ./createSprite.py > ../htdocs/css/sprite.css

3. Open htdocs/images/all.png in GIMP

4. Save the PNG as a GIF for IE6 support. If steps 3 and 4 are neglected IE users will see very strange sprites.

To specify an image for a “selected” tool add an image in the images/toolbar directory with “-selected” included at
the end of the name. For example, the popups tool has two images in the toolbar directory: “popups.png”, “popups-
selected.png”. When createSprite.py runs it searches the directory for the “selected” images and places them in the
right-column of the sprite as appropriate.

Toolbar Styling

The toolbar styling has two components:

1. The sprite imaging layout explained above.

2. .Tool and .selected.

(a) .Tool – defines the basic CSS for laying out the tool.

(b) .selected – defines additional information when the tool is selected. In the default installation this makes
the toolbar tool background grey.

38 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

..note:: You will need to have Python installed on your computer to run this script. If you are running Windows, you
probably need to get PIL library for Python. See http://www.pythonware.com/products/pil/

6.1.9 What happened to the Menubar?

For the most part it is gone. There is still a place for the menubar to exist, however, there is no longer an elaborate
separate code base to make a javascript powered menu function. If you would like to do this, the ability is still there.
We removed this functionality for a few reasons.

1. We were maintaining the code. The menubar.js and related configuration was maintained by the GeoMOOSE
authors and like much of the Javascript code base, minor browser changes could effect the function and break
it. Even worse, when it did break, there were very few people who noticed. This gave us an indication that the
feature was under utilized.

2. A secondary configuration file was slow to load. To have two configuration files at startup was causing two
Ajax requests to be made at startup. This noticibly slowed the loading time and would cause skews in how the
interface rendered.

6.1.10 Using the Reference Map

The display in the reference map is done on a service-by-service basis. This document attempts to cover the imple-
mentation of various reference map tasks.

Reference Layers Display with the Main Map

This is the common GeoMOOSE reference map. Under this scenario a source is included in both the main map and
the reference map. To do this simply add set the reference attribute to true in the map-source:

<map-source name="basemap" type="mapserver" reference="true">
<file>./demo/statedata/basemap.map</file>
<layer name="county_borders"/>
<layer name="county_labels"/>
<layer name="city_poly"/>
<layer name="city_labels"/>
<layer name="USGSGagingStations"/>

</map-source>

Now whenever one of these layers is made visible, it will also be made visible in the reference map. These layers
would be controlled in catalog just as they would if they were not included in the reference map.

A Fixed Reference Map set of Layers

There are situations in which having an extremely dynamic reference map is wasteful. In this case, it’s desirable to
setup the reference map to have a fixed set of reference layers. To make a source display all of it’s layers in the
reference map by default the reference attribute must be set to true at both the source and layer level:

<map-source name="states" type="mapserver" reference="true">
<file>./demo/statedata/statesUTM15N.map</file>
<layer name="all" reference="true"/>

</map-source>

To prevent this layer from changing DO NOT include it in the catalog. If you would like to have this layer in the main
map and fixed in the reference map you should create TWO map-source entries. One entry should be configured
similar to above, for the reference map, and another should be configured with a different name and without any of the

6.1. References and Write-Ups 39

http://www.pythonware.com/products/pil/

GeoMOOSE Documentation, Release 2.X

reference attributes set to true. This second map-source will be used in the main map (and consequently in the
catalog).

Mixing and Matching Layers

The two setups above involved only a single layer in their demonstrations. The Reference Map could have a mix of
fixed and dynamic layers. The configurations above just show small examples of how the maps can be setup.

Starting up the Reference Map Collapsed

By default the reference map starts open, this can be changed with the “reference_map.maximized” parameter:

<param name="reference_map.maximized">false</param>

Getting Rid of the Reference Map

In the case that a reference map is undesirable:

<param name="reference_map.enabled">false</param>

6.1.11 GeoMOOSE User Extensions

GeoMOOSE User Extensions are the latest way to customize a GeoMOOSE installation. While it has been common
practice to modify the root of the code to create various custom tools, that has left some installations stagnant and
unable to smoothly upgrade or integrate with new GeoMOOSE releases when they have become available. To address
these concerns, we have developed GeoMOOSE User Extensions. These extensions will never be clobbered by a
GeoMOOSE upgrade. However, extensions written that access core library functions may break as the underlying
library API’s may change over time.

What is the purpose of User Extensions?

The purpose of user extensions is for the customizer of a site to, “go crazy.” It allows for users to add any functionality
they wish to the user interface without forcing their code to break away from the main code base.

But Duck, how do I make one?

Good Question. Here is a brief tutorial...

Step 1: Come up with an idea for a user extension.

Say you want a disclaimer to show at the beginning of the application. Let’s just say that disclaimer is, “Hello, World!”

Step 2: Write the User Extension

User extensions are stored in the “extensions/” folder under “htdocs/”. For this example we’ll create a file called,
“Disclaimer.js”. In “Disclaimer.js” we need to add the basic outline of the class by inhereting from the base user
extension class. The file should look like this:

40 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

DisclaimerExtension = new OpenLayers.Class(GeoMOOSE.UX.Extension, {
CLASS_NAME : "DisclaimerExtension"

});

This sets up a blank extension that does nothing. Let’s break down the code as to what’s happening:

• DisclaimerExtension - This defines the Javascript name for your extension. You’ll want to give your
classes long descriptive names so they do not clobber other potential global variables. Those who are more
advanced are probably asking “Why didn’t you name space them?” and the answer is: “To make it easier
on people who don’t necessarily understand what ‘namespacing’ is.”

• new OpenLayers.Class - This is the OpenLayers class constructor.

• GeoMOOSE.UX.Extension - The base GeoMOOSE User Extension class. By putting this class as the first
parameter we’re going to “inheret” all of the methods from the base class.

• CLASS_NAME : ‘DisclaimerExtension’ - This configures the class so it knows its own name.

Now we need to have the class actually do something. The initial function that is called when an extension is loaded
is called “load.” So, now we define the load method andh have it display our disclaimer using “alert.”

DisclaimerExtension = new OpenLayers.Class(GeoMOOSE.UX.Extension, {
load: function() {

alert("Hello, World!");
},

CLASS_NAME: "DisclaimerExtension"
});

Finally, we need to tell GeoMOOSE to load the extension at startup by adding this at the end of the file:

GeoMOOSE.UX.register(’DisclaimerExtension’);

The completed “Disclaimer.js” should look like this:

DisclaimerExtension = new OpenLayers.Class(GeoMOOSE.UX.Extension, {
load: function() {

alert("Hello, World!");
},

CLASS_NAME: "DisclaimerExtension"
});

GeoMOOSE.UX.register(’DisclaimerExtension’);

Step 3: Add the Extension to geomoose.html

• Open “geomoose.html” in a text editor.

• Find “</head>”

• On the directly above “</head>” add:

<script type="text/javascript" src="extensions/Disclaimer.js"></script>

Step 4: Enjoy!

Now you should see “Hello, World!” when the application starts.

6.1. References and Write-Ups 41

GeoMOOSE Documentation, Release 2.X

Other Examples

An example of an User Extension which updates the interface on a periodic basis can be found in the “extensions/”
directory with GeoMOOSE 2.2, the file is called “ColorChanger.js”.

6.1.12 UNIX Installation Guide

Introduction

Pre-Requisites

GeoMOOSE requires a pretty full feature MapServer build. The following options are used by the development team
on UN*X based systems to build MapServer:

--with-php=[path to php includes]
--with-agg=[path to agg libs]
--with-gd=[path to gd libs]
--with-wfs
--with-wmsclient
--with-wfsclient
--with-postgis
--with-proj=[path to proj]
--with-geos=[path to geos-config]/geos-config
--with-freetype=[path to freetype]
--with-gdal=[path to gdal-config]/gdal-config
--with-ogr

MapServer’s PHP/Mapscript must also be installed. Please see the MapServer website for additional details on how
to install and compile MapServer. You will also find information about the MapServer mailing lists which are very
helpful for trouble shooting and additional instructions.

Current development efforts are against MapServer versions 5.2 and 5.4.

VERY IMPORTANT NOTE: Some Linux distributions come pre-packaged with a version of MapServer. This ver-
sion of MapServer can be extremely out-dated and can be missing critical functionality (AGG rendering for example).

Installation

If the Pre-req’s have been met then the hard part is actually over. Extract the GeoMOOSE .tar.gz file to a conveinent
directory:

tar -xzvf geomoose-[version].tar.gz

Enter the directory and run configure:

cd geomoose-[version]
./configure

There are a few important configuration options to keep in mind before moving on:

--prefix=DIR Installation directory (defaults to /opt/geomoose2)
--with-temp-directory=DIR Temporary directory for script output (/tmp/www)
--with-url-path=DIR URL Path, the root web directory for the application (/geomoose2/)
--with-projection=SRS SRS string defining the map’s projection (default EPSG:26915)
--with-mapfile-root=PATH Path to the mapfiles root (default PREFIX/maps)
--with-mapserver-url=URL URL to mapserver (default /cgi-bin/mapserv)
--with-server-name=SERVERNAME Self referential name of the server (defaults to localhost)

42 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

The most important of these is –prefix, –with-temp-directory, and –with-url-path as they define where GeoMOOSE
will be installed, GeoMOOSE’s critical temporary directory, and the URL from which GeoMOOSE will be served.
The defaults have been tested to work but they are not appropriate for all installations.

Next we need to actually install the files:

make install

This will move all of the files to the appropriate directory and write an apache configuration file that matches your parameters above. The final step of the installation is to reference that apache file in your apache configuration. There are two ways of doing this:

1. Add an “Include” directive to httpd.conf:: Include “/opt/geomoose2/geomoose2_httpd.conf”

2. Add a symbolic link into a http.d directory. This varies greatly by system, this is just an example.::
ln -s /opt/geomoose2/geomoose2_httpd.conf /etc/apache/http.d/other/geomoose2_httpd.conf

6.1.13 MS4W Installation Guide

VERY IMPORTANT NOTE There is no direct upgrade path from GeoMOOSE 1.x to GeoMOOSE 2.2, but the
mapbook and map files from your GeoMOOSE 1.x installation are very useful when configuring GeoMOOSE 2.2. If
you are upgrading your GeoMOOSE installation and have made configuration changes or added your own data to the
maps folder, you should backup those files before proceeding. Once you have your MS4W folders backed up, you
should delete these files and folders before proceeding.

Introduction

GeoMOOSE is a client side framework that is developed for use with MapServer (http://mapserver.gis.umn.edu).
While GeoMOOSE does not require MapServer to be installed when setting up a basic map viewer, many of the
services included with GeoMOOSE (identify, query, search, etc.) do require MapServer. Most people will find it
worthwhile to install MapServer and if you are going to install GeoMOOSE on a Windows-based computer, it is
highly recommended that you use the MS4W package (MapServer for Windows). If you are installing GeoMOOSE
on a Linux computer, see instructions at (http://geomoose.org/docs/install_unix.html).

In an effort to make it as simple as possible to get MapServer installed, we have packaged GeoMOOSE in an
MapServer for Windows (MS4W) package. This document provides the steps necessary to download and install
all the components required for GeoMOOSE.

IMPORTANT NOTE You need to have administrator level access to your computer to install and configure either
Apache or IIS Server.

NOTE If you are new to web servers and developing web sites we STRONGLY recommend using Apache as your
web server.

Step 1: MS4W Installation

IMPORTANT NOTE There are compatibility issues with MS4W 3.0 beta 10 and GeoMOOSE, we recommend that
you use MS4W 2.3.1. Developers are working to make GeoMOOSE compatible with the newest release of MS4W.

• The MS4W download will install Apache, MapServer and PHP. Download the MS4W package from the Map-
tools web site at http://www.maptools.org/ms4w.

• There is not a traditional “install” program for MS4W, rather you are going to unzip the contents to the root of
your C: drive. Actually, MS4W does not have to be installed on the C drive, but it is good practice to have the
MS4W directory at the root of the drive (not in “Program Files”). You should not have multiple MS4W folders.

6.1. References and Write-Ups 43

http://mapserver.gis.umn.edu
http://geomoose.org/docs/install_unix.html
http://www.maptools.org/ms4w

GeoMOOSE Documentation, Release 2.X

• Once you have the MS4W package unzipped on your computer, you will need to decide which web server to
use. The two most common choices are Apache and Microsoft IIS. Unless you need the integrated Windows
authentication IIS provides or your organization requires the use of IIS, we recommend using the Apache web
server that is included with MS4W.

Step 2: GeoMOOSE Installation

• Go to the GeoMOOSE download page (http://geomoose.org/info/download.html). There are two
versions of GeoMOOSE for MS4W. “GeoMOOSE 2.2 for MS4W - Web Mercator Demo” is pre-
configured with the setting necessary for Google, Yahoo, bing, and OSM base maps; if you want to
use one of these base maps, your map will have to be in the web Mercator projection. If you are not
going to use one of these base maps, we recommend using the other “GeoMOOSE 2.2 for MS4W”
download.

• The GeoMOOSE installation is similar to MS4W in that there is not a traditional “install” program.
The only step is to unzip the files to the C:/MS4W directory. When finished, the GeoMOOSE
installation should be in C:/ms4w/apps/geomoose2

Step 3a: Configuring Apache web server

NOTE Skip this step if you going to install IIS server in Step 3b.

• Apache comes pre-configured with MS4W and as long as it is installed at the root of the
drive (i.e. “C:/ms4w”), all that is needed to complete the process is installing Apache
as a Windows service. From Windows Explorer (or a command prompt), double-click on
C:/ms4w/apache-install.bat. A command window will appear for a couple seconds and
then disappear.

• To test if the installation is working, from a browser on the computer you installed MS4W and
GeoMOOSE, type in the address http://localhost. Your screen should display information
about MS4W and the applications installed like the image below.

44 Chapter 6. GeoMOOSE Documentation

http://geomoose.org/info/download.html

GeoMOOSE Documentation, Release 2.X

• At the bottom of this page is a list of applications installed which use MS4W. Click on the Geo-
MOOSE 2.2 link to test the installation.

• Further help and troubleshooting information is provided in the MS4W documentation
(http://www.maptools.org/ms4w/index.phtml?page=README_INSTALL.html).

Step 3b: Configuring Microsoft IIS 6.0 web server

NOTE Skip this step if you installed Apache server in Step 3a. NOTE These instructions are for IIS 6.0 which is part
of Windows Server 2003 and Windows XP Professional 64 bit. The steps are similar for other versions of IIS, however
the interface can be very different and will not match screen shots provided here.

• Open the “IIS Manager”.

• Create a virtual directory called “geomoose2” and point it to the path
“C:/ms4w/apps/geomoose2/htdocs”. See screen shots below for an example of adding a vir-
tual directory.

6.1. References and Write-Ups 45

http://www.maptools.org/ms4w/index.phtml?page=README_INSTALL.html

GeoMOOSE Documentation, Release 2.X

46 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

6.1. References and Write-Ups 47

GeoMOOSE Documentation, Release 2.X

• At the same level as the “geomoose2” directory, create a virtual directory called “cgi-bin” and point
it to the path “C:/ms4w/Apache/cgi-bin” using the same settings as the “geomoose2” directory.

• At the same level as the “geomoose2” directory, create a virtual directory called “ms_tmp” and point
it to the path “C:/ms4w/tmp/ms_tmp” setting the permissions as shown below.

48 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

IMPORTANT NOTE There are many versions of PHP available, it is highly recommended that you use the version
provided with MS4W as it includes all of the necessary components for MapServer to run properly.

• Set the web service extensions to use PHP from “C:/ms4w/Apache/cgi-bin”. This configuration can
be done once at the web site level to provide support for all virtual directories (recommended), or at
the directory level if some directories need to use different versions of PHP. If you configure PHP at
the directory level, make sure to set PHP on all three GeoMOOSE directories.

6.1. References and Write-Ups 49

GeoMOOSE Documentation, Release 2.X

50 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

6.1. References and Write-Ups 51

GeoMOOSE Documentation, Release 2.X

• IIS needs to be configures to allow two CGI applications (php-cgi.exe and mapserv.exe) to be ac-
cessed. Click on “Web Service Extensions” and add the extensions as shown below.

52 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

• From a text editor (i.e. WordPad) and open “C:ms4wApachecgi-binphp.ini”. Search for
“cgi.force_redirect” - this value must be set to zero. It will look like this cgi.force_redirect
= 0

• To test if the installation is working, from a browser on the computer you installed MS4W and
GeoMOOSE, type in the address http://localhost/geomoose2/geomoose.html.

• At the bottom of this page is a list of applications installed which use MS4W. Click on the Geo-
MOOSE 2.2 link to test the installation.

NOTE On some Windows-based computers, you will need to set an environment variable for the location
of the prog4 library. This step is needed if you recieve the error “msProcessProjection(): Projection li-

6.1. References and Write-Ups 53

GeoMOOSE Documentation, Release 2.X

brary error. No such file or directory”. Instructions for adding the envronment variable can be found at
http://mapserver.org/errors.html.

Common Issues

• Not having Administrator level access. This will prevent Apache from being installed as a service.

• Another web server is running on the computer. If IIS or Apache is already running on the computer on port 80,
you will receive an error message when trying to start your new web server. There are many sources on the web
which will provide instructions on running both IIS and Apache on the same server by changing the port used
by one of the servers.

• Firewall blocking port 80. If you can access GeoMOOSE from the localhost but not other computers, check
firewall settings on the computer hosting GeoMOOSE and other external firewalls.

Next Steps

Now that GeoMOOSE is installed, the next step is to start customizing it for your map. Some helpful documents to
look at include:

• Mapbook Reference Guide

• GeoMOOSE Configuration Options

• How To Add Your Own Layers

• How To Create Your Own Skin

6.2 Service Documentation

6.2.1 General Query Service (query.php)

2.2+ ONLY

General Description

GeoMOOSE provides a general query service that allows the user to query multiple layers and fields through a single
CGI query. Results can be optionally highlighted.

The Query service is intented to replace the itemquery.php service and eventually the identify service. Both ItemQuery
and Identify may be dropped as of the official 2.0 release. Currently Shapefiles, OGR, Oracle Spatial, and PostGIS
are the only supported layer types for the General Query Service. If you plan to search a layer other than you may
consider modifying query.php to meet your needs or write another service entirely.

Important settings.ini Variables

• query_header - This will be prepended to the HTML results.

• query_footer - This will be append to the HTML results.

• query_miss - This is the message that will be displayed when no results are found.

As a compatibility step, the current version of query.php will default to using the “itemquery_...” versions of the above
settings when it cannot find the proper “query_...” settings.

54 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

Parameters

The parameters for this service are unique because they can be variable based on the number of fields and layers that
will be queried by the service.

• mode is a hidden input that should always be set to “search”.

• highlight is a hidden input that is a boolean. “True” will mean the selected features will be highlighted, “false”
means they will not be highlighted.

• zoom_to_first is a hidden input that is a boolean. When set to “true” GeoMOOSE will always zoom to the first
feature found in the search, when set to “false” GeoMOOSE will not exhibit this behaviour.

• layer[0..n] is the Mapbook path of the layer to search. Only the 1st layer (layer0) is required. If no other layers
are specified then it is assumed that the target of all of the following inputs are layer0.

• value[0..n] the value which should be search against. Only the 1st value (value0) is required. If no other values
are specified then it is assumed that the initial value will be used to search all other fieldnames.

• fieldname[0..n] is the name of the field in the table or DBF to search against. This is required for every field.

• comparitor[0..n] is the name of the comparison operator. Valid comparison operators include:

– “eq-str” - String equals match.

– “like” - Case-sensitive contains operator. The equivalent SQL is “fieldname like ‘%value%”’.

– “right-like” - Case-sensitive “begins with” operator. The equivalent SQL is “fieldname like ‘value%”’

– “left-like” - Case-sensistive “ends with” operator. The equivalent SQL is “fieldname like ‘%value”’

– “like-icase” - Case-insensitive “like.”

– “right-like-icase” - Case-insensitive “right-like.”

– “left-like-icase” - Case-insensitive “left-like.”

– “eq” - Equals operator. This is used for numeric operations.

– “gt” - Greater-than operator.

– “lt” - Less-than operator.

– “ge” - Greather-than or equal-to operator.

– “le” - Less-than or equal-to operator.

• operator[1..n] is the type of connecting operator between searching predicates. There is no “operation0” as it is the start of the search-string and there is not a connecting operator.

– “and” - Require both this statement (n) and the previous one (n-1).

– “or” - Require either this statement (n) or the previous one (n-1).

– “nand” - Require this statement to be false (n) and the previous one to be true (n-1).

– “nor” - Require this statement to be false (n) or the previous one to be true (n-1).

• blanks[0..n] is a hidden boolean tied to the value[0..n]. If set to “true” blank values will mean this predicate is
ignored, when set to “false” then a blank value will be evaluated.

• template[0..n] specifies the template to use. This template is specified in the LAYER’s METADATA tag. Only
template0 is required. If no other templates are specified it will try to use the template named in template0 for
all layers. For example, to mimic the itemquery functionality the “itemquery” template is used in the examples
below. It is possible to use other templates, such as identify_record, and is even possible to provide this as a
drop-down option to the user. This would allow a single search to have different result outputs.

6.2. Service Documentation 55

GeoMOOSE Documentation, Release 2.X

Sample Mapbook Service Definitions

This is a basic example that emulates the old itemquery.php service:

<service name="search_parcels">
<url>php/query.php</url>
<step type="input">

<input type="select" name="fieldname0" title="Search By:">
<option value="OWNER_NAME">Owner</option>
<option value="PIN">Parcel ID</option>

</input>
<input type="hidden" name="comparitor0" value="like-icase"/>
<input type="user" name="value0" title=""/>
<input type="hidden" name="layer0" value="parcels/parcels"/>
<input type="hidden" name="template0" value="itemquery"/>

<input type="hidden" name="highlight" value="true"/>
<input type="hidden" name="mode" value="search"/>

</step>
</service>

This is an example that allows the user to choose what comparitor is used to search:

<service name="search_parcels">
<url>php/query.php</url>
<step type="input">

<input type="select" name="fieldname0" title="Search By:">
<option value="OWNER_NAME">Owner</option>
<option value="PIN">Parcel ID</option>

</input>
<input type="select" name="comparitor0" title="That: ">

<option value="like-icase">Contains</option>
<option value="right-like-icase">Begins With</option>
<option value="eq-str">Matches Exactly</option>

</input>
<input type="user" name="value0" title=""/>
<input type="hidden" name="layer0" value="parcels/parcels"/>
<input type="hidden" name="template0" value="itemquery"/>

<input type="hidden" name="highlight" value="true"/>
<input type="hidden" name="mode" value="search"/>

</step>
</service>

Finally, this example shows searching multiple fields with selectable operators and comparitors:

<service name="search_parcels">
<url>php/query.php</url>
<step type="input">

<input type="hidden" name="highlight" value="true"/>
<input type="hidden" name="mode" value="search"/>

<input type="hidden" name="layer0" value="parcels/parcels"/>
<input type="hidden" name="template0" value="itemquery"/>

<input type="select" name="fieldname0" title="Search By:">
<option value="OWNER_NAME">Owner</option>
<option value="PIN">Parcel ID</option>

</input>

56 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

<input type="select" name="comparitor0" title="That: ">
<option value="like-icase">Contains</option>
<option value="right-like-icase">Begins With</option>
<option value="eq-str">Matches Exactly</option>

</input>
<input type="user" name="value0" title=""/>

<input type="hidden" name="fieldname1" value="FIN_SQ_FT"/>
<input type="select" name="operator1">

<option value="or">OR</option>
<option value="and">AND</option>

</input>
<input type="select" name="comparitor1" title="Having Fin. Sq. Ft. ">

<option value="gt">Greater Than</option>
<option value="eq">Equal To</option>
<option value="lt">Less Than</option>

</input>
<input type="user" name="value1" title=""/>

</step>
</service>

6.3 Extensions Documentation

6.3.1 Disclaimer

Description

Some users wish to put a disclaimer at the beginning of their application. Disclaimer.js provides this by prompting the
user with an alert box when the application starts.

Adding to Application

To add Dynamic Select to your application add:

To add the Disclaimer to your application add the following lines:

<script type="text/javascript">
window.DISCLAIMER_MESSAGE = "This is my disclaimer.";

</script>

<script type="text/javascript" src="extensions/Disclaimer.js"></script>

Setting DISCLAIMER_MESSAGE sets what disclaimer is show at startup. Without it the user will see “Hello, world.”

6.3.2 Dynamic Select

Description

The default “Zoom To”s with GeoMOOSE are static and predefined in the Mapbook. They do not change based
on updates of a layer, and can be tedious to type out even for layers with relatively few features. To address this,
DynamicZoom provides an Ajax-capable feature look up that allows the user to select a dataset, then a feature from
that dataset. After selecting the feature, the map zooms to the extent of that feature.

6.3. Extensions Documentation 57

GeoMOOSE Documentation, Release 2.X

Adding to Application

To add Dynamic Select to your application add:

<script type="text/javascript" src="extensions/DynamicZoom.js"></script>

Configuration

Configuring Dynamic Select consists of three steps:

1. Create a template file.

2. Edit the layer’s metadata.

3. Add the layer to DynamicZoomConfiguration

1. Create the template file

To create the template file, goto the direct where the mapfile exists. For this example, we’ll be using the “coun-
ties_border” layer inside of the “basemap.map” mapfile. This mapfile can be found in the maps/demo/statedata direc-
tory that comes with the GeoMOOSE demo. The template is very simple, and creates the needed to create “<option>”
tags in HTML:

<!-- MapServer Template -->
<option value="[shpext]">[COUNTYNAME]</option>

The first line is the MapServer “magic string” that is required for template files starting in version 5.4. The second line,
has a few important prts. The first is the “[shpext]” directive, this tells mapserver to place the feature’s extent into this
part of the string. “[COUNTYNAME]” tells MapServer to place the feature’s title, in this case ‘COUNTYNAME,’
into the template. When working with a different layer, substitute “COUNTYNAME” for whatever the layer’s title
column name happens to be. For this example, we’ll name the file, “county_dynamic_zoom.html”

2. Edit the layer’s metadata.

Now we need to tell GeoMOOSE about this template file. The method for doing that is to add a METADATA entry to
the mapfile. First, it is neccessary to find the LAYER entry in the mapfile, that will look something like this:

LAYER
NAME county_borders
...

END

Then, check to see if there is already a METADATA section, if there is not then add one:

LAYER
NAME county_borders
...
METADATA
END

END

Finally, the metadata entry needs to be made:

LAYER
NAME county_borders
...

58 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

METADATA
’dynamic_zoom’ ’county_dynamic_zoom.html’

END
END

3. Add the layer to DynamicZoomConfiguration

Edit htdocs/extensions/DynamicZoom.js, at the very top is a Javascript Object named “DynamicZoomConfiguration.”
In DynamicZoomConfiguration there is an entry called layers, it is an object that contains the information for the
various layers. If the file is from a default-GeoMOOSE installation then the entry for “Counties” is already there. If it
is missing then adding the following lines would create it:
...
layers: {

’Counties’ : {
mapbook_src: ’borders/county_borders’, /* this is the src of the layer in the mapbook */
qitem: ’’, /* leave blank */
string: ’’ /* leave blank */

}
}
...

Other Options

In the above instructions “qitem” and “qstring” were intentionally left blank. However, if they are set, they will act as
a filter on the dataset. This is useful if you have multiple feature types stored in a single table. By default, the filtering
is case-insensitive.

6.4 Helpful How To’s

6.4.1 How To Add Your Own Layers

Adding a new layer in GeoMOOSE 2 is a two step procedure. The first step is to define how GeoMOOSE should
communicate with the layer (whether it is MapServer or a WMS source) and the second step defines the layer in the
catalog.

Step 1: Adding a Layer

All requests start with a <map-source> tag with a name and type attribute. The name is the name of the source
that will be used with GeoMOOSE. This name does not need to relate to the source that is going to be read. The type
attribute determines what type of service will be read. The children of the <map-source> are determined by the
type attribute. Currently mapserver and wms types are the two that are supported.

All <map-source> types have <layer> children. <layer> children have only one attribute name. The name
attribute for <layer> children reflects the name of the layer in the MapServer Mapfile or the name of the layer served
by the WMS Service. Some MapServer mapfiles will have all layers set to “default” in which case there should still
be one <layer> entry in the <map-source> with the name of “all.”

6.4. Helpful How To’s 59

GeoMOOSE Documentation, Release 2.X

A Mapserver Layer

Mapserver Layers need to have the <file> tag filled out specifying the location of the mapfile. This path can be
relative to the mapfile_root configuration setting or an absolute path on the file system.

Here is an example of the parcels layer from the default demo:

<map-source name="parcels" type="mapserver">
<file>./demo/landrecords/parcels.map</file>
<layer name="all"/>

</map-source>

A WMS Layer

WMS Layers have a <url> child that defines the root URL of the WMS service.

This is an example using the LMIC FSA Photography:

<map-source name="lmic" type="wms" tiled="false">
<url>http://geoint.lmic.state.mn.us/cgi-bin/wms</url>
<layer name="fsa"/>

</map-source>

Step 2: Adding the Layer to the Catalog

After defining how to talk to the layer we need to define how to display the layer in the interface.

Layers are defined in the <catalog> section of the mapbook. To add the LMIC FSA photography the <layer>
entry would look like this:

<layer title="LMIC 2003 FSA Aerials" src="lmic/fsa" status="on"/>

The individual parts:

• title= - Sets the title in the mapbook to be displayed

• src= - This is the layer name, it is a combination of the map-source‘s name combined with the layer‘s
name from the definitions above.

• status= - This determines whether the layer is either on or off by when the map loads. Omitting status=
will leave the layer off.

6.4.2 How To Create Your Own Skin

GeoMOOSE 2 has greatly simplified the skinning and CSS required to change elements of the interface.

Step 1: Make a Copy of a Previous Existing Skin

In the current distribution the easiest to modify skin is the “blue” skin. The directory has sub-directories so it will be
necessary to do a recursive copy (the default on windows):

cd htdocs/skins
cp -r blue myskin

60 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

Step 2: Rename the Skin and Edit It!

This is just a small step to keep things clean:

cp blue.css myskin.css

Open myskin.css in a text editor and change the code! After following step 3 you’ll see the changes in the interface.

Step 3: Set GeoMOOSE to use your Skin

Open “geomoose.html” in a text editor. In the <head> section there should be a tag starting <link... which
mentions the skin. Comment out all of the skins you will not be using and add a <link> tag including your skin.

This is the default geomoose.html with the myskin skin selected:

<!--
This is where your skin is defined.
For an example, comment out the line containing "green.css" and
uncomment "blue.css".

-->
<!--<link type="text/css" rel="stylesheet" href="skins/green/green.css"/> -->
<!--<link type="text/css" rel="stylesheet" href="skins/blue/blue.css"/> -->
<link type="text/css" rel="stylesheet" href="skins/myskin/myskin.css"/>

Tips and Advice

Changing just the Header Image

While some folks may want to change the entire look of the site you may only wish to change the header image to
match your website. Follow all three steps above. This creates a unique skin for your site. Then change to the skin’s
image directory:

cd htdocs/skins/myskin/images

In that directory is the “logo_top.jpg” image. This is the image that is used in the header, it is 670 pixels by 59 pixels.
Making a replacement image of similar size (the height is especially important) will change the logo atop the website!

6.4.3 How To Change the Tabs

GeoMOOSE 2 now features a flexible tabbing capability. This allows administrators to have any number of tabs
available to the user in the interface. This document will show how to take a svn-derived instance of GeoMOOSE and
reduce the tabs down to two (‘Layers’ and ‘Information’).

Step 1: Define the Tabs in the HTML

HTML from SVN will typically look like this:

<div id="tab-container">
<div id="catalog-tab">
</div>

<div id="search-tab">
SEARCH TAB

</div>

6.4. Helpful How To’s 61

GeoMOOSE Documentation, Release 2.X

<div id="results-tab">
No Results Yet!

</div>

<div id="service-tab">
Form Information Goes Here.
<div style="width: 400px; height: 20px; background: red">

abcdef
</div>

</div>
</div>

This HTML exists as it serves to test a number of Javascript and CSS configuration parameters. This interface is not
what is useful to deliver to users. The first task is to cut down the tabs to only the ones we want to display:

<div id="tab-container">
<div id="layers-tab"></div>
<div id="information-tab"></div>

</div>

If you were to reload the geomoose.html page then you would see an entirely broken interface. This is because we
need to adjust the configuration parameters to support this change.

Step 2: Change the Configuration

As with most configuration changes with GeoMOOSE this requires changing the mapbook. We need to specify some
basic information about where specific content should be place in the interface.

Step 2(a): Define the Tabs

GeoMOOSE uses the “tabs” configuration parameter to define the mapping of tab-names and div-ids in the interface.
The default mapping looks like this:

<param name="tabs"><![CDATA[
{

’Catalog’ : ’catalog-tab’,
’Search’ : ’search-tab’,
’Services’ : ’service-tab’,
’Results’ : ’results-tab’

}
]]></param>

With the changes made to geomoose.html earlier we now need to add this to the <configuration> section of the
mapbook to map our new Div’s to Tab names:

<param name="tabs"><![CDATA[
{

’Layers’ : ’layers-tab’,
’Information’ : ’information-tab’

}
]]></param>

62 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

Step 2(b): Define What is in the Tabs

Some tabs will have custom content. This can be a custom form or a special copyright message. In this case, the
HTML can be left in the tab and none of these settings will have an effect. However, there are very important settings
for targetting where specific content will be placed.

• default_tab - This is the tab that will be selected when the interface is opened.

• catalog_name - This is the name of the tab that will contain the catalog.

• show_service_settings_in - The name of the tab where all service settings will be shown. Service
settings are the options that are presented to the user when they click on a service like “Select” or “Print.”

• show_results_in - This sets the name of the tab that will contain the results from services.

To make this example work we would need to add the following to the <configuration> section of the mapbook:

<param name="default_tab">Layers</param>
<param name="catalog_name">Layers</param>
<param name="show_service_settings_in">Information</param>
<param name="show_results_in">Information</param>

6.4.4 How To Put Content in the Menubar

The menubar’s content can be specified by using simply HTML in the Mapbook.

In the <configuration> section you can add:

<param name="links_bar_html"><![CDATA[
THIS IS MY HTML!!!

]]></param>

Clear the browser cache and reload the interface! The HTML should appear where the menubar once existed!

6.4.5 How To Add Text to a Tool

Some tools should have text. While an Icon is nice, sometimes you may only have a single icon that is used repetetively
for a number of searches. As is often the case, it’s simply easier to read, “Search Assets” instead of filing through the
four or five relatively obscure looking 16 x 16 pixel icons. Tools on the toolbar are defined in the <toolbar> section
of the mapbook.

For this example, look at the “print” tool:

<toolbar>
(snip)
<tool name="print" title="Print" type="service" service="print" selectable="false"/>
(snip)

</toolbar>

When GeoMOOSE renders the tool in the toolbar it creates a unique ID based on the name of the tool. Since the
<tool> has the name of “print” the ID will be “tool-print”. Knowing this we can change the CSS properties of the
tool in the toolbar. GeoMOOSE renders the text for every tool in the toolbar, however, by default that text is hidden.
To display the text a few lines need to be added to user_tools.css:

#tool-print {
/* By default the tools "width" is limited to 20 pixels */
width: auto;

6.4. Helpful How To’s 63

GeoMOOSE Documentation, Release 2.X

/* This sets a custom icon for the tool */
background-position: 2 2;
background-image: url(’../images/toolbar/printer.png’);

}

#tool-print .ToolContent {
/*
* This must be in the code in this order, it makes the tools display

* properly in both IE and FF.

*/

display: -moz-inline-box;
display: inline-block;

/* This allows the tool to grow to fit the text */
width: auto;

}

#tool-print .ToolText {
/*
* These padding settings center the text in the middle of the tool.

* Depending on your icon this may not be neccessary.

*/
padding-top: 3px;
padding-right: 3px;

/*
* This must be in the code in this order, it makes the tools display

* properly in both IE and FF.

*/
display: -moz-inline-box;
display: inline-block;

}

The CSS above is commented to explain the different actions of changing those specific CSS attributes, however, in a
real application those comments would not need to be included.

6.4.6 How To Call a Service at Startup

GeoMOOSE is centered around its services. Services are defined in the mapbook by the <service> tag and they
define how GeoMOOSE should communicate with external scripts. There are a number of scenarios in which it is
neccessary to call a service on startup. The primary example of this functionality is the ability to zoom to and highlight
a feature upon opening the interface.

Given the item query service provided with the demo:

<service name="search_parcels">
<!-- The URL of the service to call -->
<url>php/itemquery.php</url>

<!-- most service have one or two "steps" this one is a non-spatial input -->
<step type="input">

<!-- the field to search against -->
<input type="select" name="qitem" title="Search By:">

<option value="OWNER_NAME">Owner</option>
<option value="PID">Parcel ID</option>

64 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

</input>

<!-- this is the actual search string -->
<input type="user" name="qstring" title=""/>

<!-- these are the rest of the settings for the service -->
<input type="hidden" name="layer" value="parcels/all"/>
<input type="hidden" name="zoom_to_first" value="false"/>
<input type="hidden" name="highlight" value="true"/>

</step>
</service>

Using this service there are two important things to note:

1. The name of the service, “search_parcels”

2. The inputs of type “user”, these are the inputs that would require the user to enter text. We need to bypass that
with parameters for the URL. In this example, the only “user” input is “qstring”.

Calling the URL

To call the service, the url must specify the “call” parameter and the appropriate user-inputs:

geomoose.html?call=search_parcels&qstring=Johnson

• The “call” parameter specifies the name of the service to call

• The “qstring” parameter is the same name of the input of type “user” and its value is set to “Johnson”

6.4.7 How To Create a Custom Printing Template

GeoMOOSE 2 uses a page-templating method for generating PDFs. Any printed map in GeoMOOSE starts as a pre-
existing PDF that does not feature a map. This PDF can have inline fonts, J PEGs, watermarks, etc. In GeoMOOSE
1.X it was necessary to write PHP to change the output format of the printing utility with 2.X that is no longer needed.
Creating PDF files have b ecome commonplace and can be done with almost any software with the avilability of PDF
printers.

Step 1: Make Your Template PDF

The first step is to create a PDF that you wish to use as a printing template. This can be done with any software that
can output to a PDF. If none of your software has an “Export PD F” option then a PDF printer may be an option on
your operating system:

• Mac OS/X - A PDF Printer is built-in. See Apple’s Documentation.
http://docs.info.apple.com/article.html?path=Mac/10.4/en/mh1035.html

• Windows - I’ve had good luck with CutePDF. http://www.cutepdf.com/

• Linux - Use CUPS. http://www.linux.com/articles/61826

For purposes of this document the PDF file generated here will be referred to as “my_template.pdf”.
“my_template.pdf” should be saved/copied into conf/print.

6.4. Helpful How To’s 65

http://docs.info.apple.com/article.html?path=Mac/10.4/en/mh1035.html
http://www.cutepdf.com/
http://www.linux.com/articles/61826

GeoMOOSE Documentation, Release 2.X

Step 2: Define the Template for GeoMOOSE

GeoMOOSE is smart, but not that smart, it does need to be told more information about the template created in Step 1.
To do this we need to create an XML template definition file. It is easiest to copy a pre-existing template and modify
it. For convenience, it makes sense to name the XML file the same as the PDF file. Copy letter_landscape.xml to
my_template.pdf. You should now have a file that contains:

<print-template>
<!-- This is the template -->
<template>default_template.pdf</template>

<!-- page dimensions -->
<page w=’11’ h=’8.5’/>

<!-- this is the location of the map in the template -->
<map x="0.43" y="1.43" w="10.15" h="6.42"/>

</print-template>

The important element to change is the name of the PDF template file to “my_template.pdf”:

<print-template>
<!-- This is the template -->
<template>my_template.pdf</template>

<!-- page dimensions -->
<page w=’11’ h=’8.5’/>

<!-- this is the location of the map in the template -->
<map x="0.43" y="1.43" w="10.15" h="6.42"/>

</print-template>

It is best to have a good guess for the <page> and <map> attributes but they can be adjusted later to fine tune the
template.

Step 3: Add the Template to the Print Options

In the mapbook, the print utility has an <input> that allows the user to select a template. To make the template
selectable it is necessary to add it to the mapbook definition.

The print service will initially have the following options:

<service name="print" title="Print Map">
<url>php/print.php</url>
<input type="print_info" name="layers"/>
<input type="extent" name="extent"/>

<input type="select" name="template" title="Output Template: ">
<option value="letter_landscape">Letter - Landscape</option>
<option value="letter_portrait">Letter - Portrait</option>
<option value="poster_landscape">Poster - Landscape</option>
<option value="poster_portrait">Poster - Portrait</option>

</input>
(snip)
</service>

In order to make “my_template” available it just needs added to the list:

66 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

<service name="print" title="Print Map">
<url>php/print.php</url>
<input type="print_info" name="layers"/>
<input type="extent" name="extent"/>

<input type="select" name="template" title="Output Template: ">
<option value="my_template">MY TEMPLATE!!!!</option>
<option value="letter_landscape">Letter - Landscape</option>
<option value="letter_portrait">Letter - Portrait</option>
<option value="poster_landscape">Poster - Landscape</option>
<option value="poster_portrait">Poster - Portrait</option>

</input>
(snip)
</service>

Reloading GeoMOOSE should show the new template as available and users should now be able to print using that
template.

Other Notes

It is possible to add dynamic text to a map. This is done by specifying a <text> tag. The text tells the printing service
to place text on the page and it supports some basic string substitution. Strings featuring a variable like ‘%abc%’ will
be substituted with URL values. For example if the string is:

Hello %name%!

And “name=Dave” is passed into the print script via the CGI parameters, the string will become:

Hello Dave!

An example can be found in the demo’s printing templates:

<text x=".5" y=".75" size="48" content="%title%"/>

The attributes breakdown like this:

• x - The x-position in inches on the page.

• y - The y-position in inches on the page.

• size - The font-size in points.

• content - The string to place on the page.

6.4.8 How To Avoid getmapbook.php

There are installations that do not use the PHP services provided with GeoMOOSE. If the reader is truly intereted in
this document then they are probably one of those exact users. This how to is written assuming you have a strong
sense of how your server is configured and how the GeoMOOSE services system functions in your environment.

Why This is a Bad Idea

The mapbook is the all-knowing configuration file for GeoMOOSE. All of the built-in services use this file as the
center definition for the application. There are also a few non-philosophical reasons why getmapbook.php exists:

6.4. Helpful How To’s 67

GeoMOOSE Documentation, Release 2.X

• Central Configration. Using the default configuration, to change the current mapbook, only one line in
conf/settings.ini needs to change and all of the services and the main HTML/JS application switch to using
that mapbook.

• Future Security. While GeoMOOSE 2.0 has not implemented the feature yet, we are actively building a security
model that uses the getMapbook() function as the central marschall for authorization. This security feature will
allow a single GeoMOOSE installation to be used for either internal or external use. It also promises to allow
an organization to prevent differing options to users based on a login.

[/soapbox]

Why It’s Okay

As stated in the introduction, if you’re doing this, you should know what you’re doing.

Here are a couple of reasons to override the mapbook setting:

• If you are having difficulty getting PHP working on your server and want to experiment with GeoMOOSE

• You want to use a different server-side scripting language (such as Python or ASP) and are not interested in
using the other GeoMOOSE PHP services.

Step 1: Override the ‘mapbook’ Setting

The ‘mapbook’ attribute of CONFIGURAITON is the only one that cannot be overriden after the mapbook is loaded.
Thus, some small changes need to be made to the geomoose.html file. Find the line that includes “compiled.js” and
add the URL to your mapbook afterwards:

<script type="text/javascript" src="compiled.js"></script>
<script type="text/javascript">

CONFIGURATION[’mapbook’] = ’mapbook.xml’;
</script>

Step 2: Change the settings.ini File (PHP Only)

It is possible to use the other PHP services with a mapbook over-ride present but they still need to know the location
of that mapbook. The settings.ini file in the conf/ director contains such information.

conf/settings.ini:: [defaults] ; Location of the default mapbook mapbook=../htdocs/mapbook_demo.xml

6.4.9 How To Customize Your Waiting Message

Some services can take serious time to load. This is especially true of the printing service which needs to assemble
many high resolution images. To help the user understand the application is running it is often useful to have a
waiting message. To customize the waiting message simply change the waiting_html configuration parameter in your
mapbook:

<param name="waiting_html"><![CDATA[
<center>

Please wait while this loads...
</center>

]]></param>

68 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

6.4.10 How To Change Default Drawing Colors

GeoMOOSE 2 features client side red-lining/drawing/sketching tools. These tools allow the user to place their own
markup on the map and edit that markup. Currently, the shapes drawn can have their shape, fill color, stroke color, and
opacity adjusted after creation. While the default red/green combination that GeoMOOSE employs by default is very
attractive we recognize it may be neccessary to adjust those settings. To do so there are three configuration variables
that need to be over-ridden in the mapbook:

<param name="drawing_tools.default_fill">red</param>
<param name="drawing_tools.default_stroke">yellow</param>
<param name="drawing_tools.default_opacity">1</param>

The “red” and “yellow” colors are used an example. These colors can be any one of the 16 supported W3C colors, a
six digit RGB color code (ex., #00FF00), or a three digit RGB color code (ex., #0F0).

6.4.11 How to set the Defaults for the Measure Tools

Units

The measure tool units are defined using configuration parameters. There is a parameter for line measuring units and
area measuring units:

• measure_tool.line_units = mi,ft,m

• measure_tool.area_units = mi,ft,m,yd,acre

Translations:

• mi = Miles

• ft = Feet

• m = Meters

• yd = Yards

• acre = Acres

All of the area_units specifications are assumed to be square units (for example, mi = Square Miles, for area measure-
ment). This example sets the default units to square Miles:

<param name="measure_tool.area_units">mi</param>

Precision

By default the measure tool will display three digits of precision. This can be changed via the
measure_tool.precision configuration variable:

<param name="measure_tool.precision">4</param> <!-- measure tool will now display four digits of precision -->

6.4.12 How to use a WMS Service in a Different Projection

Not all WMS services use the projection that a GeoMOOSE application may use natively. In this case, it is necessary
to reproject the request to display properly.

6.4. Helpful How To’s 69

GeoMOOSE Documentation, Release 2.X

Step 1: Prerequisites

Before we can do the reprojection both projections must be defined! GeoMOOSE has EPSG:4326 predefined so if
the WMS service uses EPSG:4326 you will not need to define this projection. Please review Adding Projections for
instructions on creating projections and adding them to the interface.

Step 2: Configure the WMS map-source

To define a WMS map-source in a different projection the projection attribute needs to get set to the projection
code:

<map-source name=’nasa’ type=’wms’ tiled=’false’ projection=’EPSG:4326’>
<url>http://onearth.jpl.nasa.gov/wms.cgi</url>
<layer name="global_mosaic"/>
<param name="format" value="image/jpeg"/>

</map-source>

Step 3: Add the Layer to the Catalog

This is just like any other layer:

<layer title=’NASA Global Mosiac’ src=’nasa/global_mosaic’/>

6.4.13 How to Create Custom “Input” Types

From time to time is may be necessary to create a custom “input” type for a service with GeoMOOSE. This happens
when you cannot get information about the map or from the user in a way that GeoMOOSE supports by default.

Step 1: Create an Input Type

Create the file, this one I called “MapWidth.js”:

GeoMOOSE.Services.InputType.MapWidth = OpenLayers.Class(GeoMOOSE.Services.InputType, {
MAPBOOK_NAME: "map_width",

getValue: function() {
var extent = Map.getExtent();
return extent.right - extent.left;

}
});

Step 2: Add it to the “geomoose.html”

• Open “geomoose.html” in a text editor.

• Find </head> in the file.

• Add the following line:

<script type="text/javascript" src="MapWidth.js"></script>

70 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

Step 3: Add the input type to a Service

Find the service to add the type to and add the input definition:

<service ... >
<input type="map_width" name="mw"/>

</service>

Step 4: Enjoy

This is the easiest part!

6.4.14 How to Add Google, Yahoo, or Bing Layers

Notes on All Layers

• Commercial layers can only be used as basemap layers. You cannot elevate them any higher in the list.

• Commercial layers cannot be printed. The licensing agreements for these layers do not allow them to be printed.

• You must shift your map into Web Mercator (aka “the Google Projection”). Please read Changing the Projection

How to Add Google Layers

Step 1: Add the Google API to geomoose.html

• Open “geomoose.html” in a text editor.

• Find the <script.. tag that contains ‘OpenLayers.js’ in the ‘src’ attribute.

• Then add the Google API, the code should look like this:

<script type="text/javascript" src="http://maps.google.com/maps?file=api&v=2&key=ABQIAAAAnfs7bKE82qgb3Zc2YyS-oBT2yXp_ZAY8_ufC3CFXhHIE1NvwkxSySz_REpPq-4WZA27OwgbtyR3VcA"></script>
<script type="text/javascript" src="OpenLayers-2.8/OpenLayers.js"></script>

Step 2: Add the Google map-source Definitions

Now it is necessary to put the map-source definitions into the Mapbook:

<map-source name="google_physical" type="google" google-type="physical">
<layer name="all"/>

</map-source>

<map-source name="google_streets" type="google" google-type="streets">
<layer name="all"/>

</map-source>

<map-source name="google_hybrid" type="google" google-type="hybrid">
<layer name="all"/>

</map-source>

<map-source name="google_satellite" type="google" google-type="satellite">
<layer name="all"/>

</map-source>

6.4. Helpful How To’s 71

GeoMOOSE Documentation, Release 2.X

Step 3: Add the Definitions to the Catalog

Google layers can only be used as basemap layers. So when using them as a background it is usually wise to simply
create a backgrounds group and allow the user to toggle between the various layers:

<group title="Backgrounds" expand="true" multiple="false">
<layer title="Streets" src="google_streets/all" status="on"/>
<layer title="Physical" src="google_physical/all" status="off"/>
<layer title="Hybrid" src="google_hybrid/all" status="off"/>
<layer title="Satellite" src="google_satellite/all" status="off"/>

</group>

6.5 Release Notes

6.5.1 GeoMOOSE 2.2 Release

Features:

• Google, Bing, Yahoo, ArcGIS Server Cache Layers!

• A new super-query service!

• User Extensions

• Better, Customizable Input Types

• More bug fixes!

• Bug fixes to the Geocoder and Popup Services

• Addition of Feature Report service

You might be asking your self the following questions:

1) Is it worth the upgrade? Yes.

2) Is this the version that should convince me to upgrade from 1.X to 2.X? Yeah, this is definitely a
worthwhile upgrade. The User Extensiosn and Custom Input types have really advanced customizations
unavailable in the 1.X series of releases.

6.5.2 GeoMOOSE 2.0.1 Release

Features:

• A multitude of bug fixes.

• Sketching/Redlining Tools

• Improved Printing Configuration

• Improved Demo

• Upgrade to OpenLayers 2.8

• autotools based configuration/installation.

72 Chapter 6. GeoMOOSE Documentation

GeoMOOSE Documentation, Release 2.X

Install Instructions for UNIX/Linux have been added:

http://www.geomoose.org/moose/docs/install_unix.html

You might be asking your self the following questions:

1) Is it worth the upgrade? Yes.

2) Is the upgrade as painful as upgrading old GeoMOOSE 1.X.X versions? No! You should not have to
change your mapbook at all. You should back up your settings.ini and verify changes there.

3) Is this the version that should convince me to upgrade from 1.X to 2.X? Probably, but 2.2 will be coming
soon and that will be even more worthwhile with additional bug fixes and a few additional features.

4) Are there still bugs? Yep, we even know about a bunch of them and are working on fixing them.

6.5. Release Notes 73

http://www.geomoose.org/moose/docs/install_unix.html

GeoMOOSE Documentation, Release 2.X

74 Chapter 6. GeoMOOSE Documentation

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

75

	What is GeoMOOSE?
	GeoMOOSE Gallery
	More Information About GeoMOOSE
	GeoMOOSE License
	Gallery
	Mailing Lists
	Commercial Support
	GeoMOOSE Demo
	Downloads

	GeoMOOSE News
	3/25/2011 - GeoMOOSE 2.4RC1 Ready for Download
	2/18/2010 - GeoMOOSE 2.2 Officially Released
	2/18/2010 - Web Mercator Demo Added
	2/3/2010 - NEW WEBSITE!
	2/3/2010 - GeoMOOSE 2.2 RC1 Released
	10/9/2009 - GeoMOOSE 2.0.1 Released
	8/20/2009 - Updated Documentation
	7/21/2009 - GeoMOOSE 2.0 Released

	More Information About GeoMOOSE
	GeoMOOSE License
	Gallery
	Mailing Lists
	Commercial Support
	GeoMOOSE Demo
	Downloads

	GeoMOOSE Documentation
	References and Write-Ups
	Service Documentation
	Extensions Documentation
	Helpful How To's
	Release Notes

	Indices and tables

